COTS: A Survey Data & Analysis Center for Software

Commercial-Off-The-Shelf (COTS): A Survey
A DACS State-of-the-Art Report

Contract Number SP0700-98-D-4000
(Data & Analysis Center for Software)

Prepared for:

Air Force Research Laboratory -
Information Directorate (AFRL/IFED)
32 Brooks Road
Rome, NY 13441-4505

Prepared by:
Maurizio Morisio
University of Maryland
College Park, MD 20742

Nancy Sunderhaft
Data & Analysis Center for Software
775 Daedalian Drive
Rome, NY 13441-4909

December 2000

Unclassified and Unlimited Distribution

Data & Analysis Center for
Software (DACS)
P.O. Box 1400

AR Rome, NY 13442-1400
- h (800) 214-7921,
Data & Analysis Center for Softvware (315) 334-4964 - Fax

cust-laisn@dacs.dtic.mil
http://iac.dtic.mil/dacs

The Data & Analysis Center for Software (DACS) is a Department of Defense (DoD) Information Analysis
Center (IAC), administratively managed by the Defense Technical Information Center (DTIC) under the
DoD IAC Program. The DACS is technically managed by Air Force Research Laboratory Information
Directorate (AFRL/IF) Rome Research Site. ITT Industries - Advanced Engineering & Sciences Division
manages and operates the DACS, serving as a source for current, readily available data and information
concerning software engineering and software technology.

http://iac.dtic.mil/dacs/
http://iac.dtic.mil/dacs/
mailto:cust-laisn@dacs.dtic.mil
http://www.defenselink.mil/

COTS: A Survey Data & Analysis Center for Software

Abstract

The goal of this report is to survey the state of the practice in COTS-based
development. The report discusses the definition of COTS and COTS-based
system. Then it lists and discusses pros, cons and issues in COTS-based
development. The central part is dedicated to survey methods and techniques
that can be useful in COTS-based development. Finally a process to support
COTS-based development is proposed, and emerging standards and techniques
for component integration are discussed.

COTS: A Survey Data & Analysis Center for Software

I | 0 (o o 18 [ox [o [P PPPR 1
2 COTS and COTS SYSIEIMS ...uuiiiiiiiii e e e e e e e eees 3
2.1 COTS Definition and Classification...............uuuuiiiiineiiiiiiiiiiie e 3
2.1.1 EXamples of COTS.... e 7

2.2 COTS and COMPONENLESciiiiiiiieeiiiie e e e e e 8
2.3 COTS-System Definition and Classification..............cccccoeeevviiiiiieiiiinnnnnn. 9

3 Issuesin COTS-Based Developmentcooeiiiiiiiiiiiiciiiiiee e 11
3.1 AN ACtUAl COTS PrOCESScciiiiiiiiiiiiiee ettt 12
3.2 MAJOF ISSUEBS. ... et 15

4 Technigues and Methods for COTS ..o 17
O Yo (U] [(=T 4 1= o] £ 17
41.1 COTS SEIlECHON. ... 17
4.1.2 Requirements and COTS Selection.cccccooeeviiiiiiiieiiiiiiceeeeeii, 18

4.2 Design and INtegrationccoeeiiiiiiiiieeiiie e 19
4.2.1 Design Representationccoveeveiviiiiciiiiiie e 19
4.2.2 Integration IncompatibilitieScccoiiiiiiiiiii e, 19
4.2.3 Integration TEChNIQUEScooiiiiiiiie e, 25

S == 1 [Vo PP 27
4.3.1 (O o A =S 1 Vo PP 27
4.3.2 Unit Testing TeChNIQUES...........uoiiiiiiiie e, 28
4.3.3 WAHITE BOX iiiiiiiiiiiie ettt e et e e e e e eeanee 28
4.3.4 BIACK BOX ... 29
4.3.5 COTS Unit Testing TeChNIQUES........ccooviviiiiiiiiiiee e, 31
4.3.6 INtegration TESHNG......ccioiiiiii e e 33
4.3.7 COTS Integration TeSHNG........coeeeiiiiiii e 34

4.4 COTS and Highly Reliable Systems..........ccocoiiiiiiiiiiii e, 35
4.5 Project Management and Cost EStimationccccceeevvvviiiiieeeininnnn, 36

5 A Suggested COTS PrOCESS ...cccvuvuiiiiiiiiie ettt 39
5.1 REQUITEMENTS ...ttt ettt e e e e e e e e e aaa s 39
5.2 DBSION oo 41
5.3 ROIBS .. 41
5.3.1 COTS TOAM ..ottt 41
5.3.2 Interface With VENAOr ... 42

6 Technologies and Standards for COTS Integrationccccoeeevvviiiiieeeennnnnn. 43
6.1 CORBA, DCOM, and Java/RMI..........c.ccccoiiiiiiiiiiiii e 43
6.1.1 Resources — CORBA....... e 44
6.1.2 Resources — DCOM ... 48
6.1.3 BOOKS — DCOM ...eiiiiiiceeee e 50
6.1.4 Resources — JaVa/RMIoiiiiiiiiiiiiici e 50

6.2 Component Models — ActiveX and JavaBeans.................cccceeeeeeeennn 52
6.2.1 RESOUICES — ACHIVEX ... 52
6.2.2 BOOKS — ACHVEX ... 53
6.2.3 Resources — JavaBeans............ocoouuiiiiiiiiiiii e 54
6.2.4 BOOKS — JavaBeans..........cc.uuuiiiiiiiieeeeceee e 56

COTS: A Survey Data & Analysis Center for Software

O 00

6.2.5 Educational Materials — JavaBeanscccccvvvviiiiiiiiinnneeeeeee, 57
IR T 1 o PSR 58
6.3.1 RESOUICES —— JiNi.uuiiiiiiiiiiiie e 58
6.3.2 BOOKS —— JiNT it 60
6.3.3 Frequently Asked Questions (FAQ) — JiNicccevveiiiiiiiiiiieeeeennnnn. 61
6.4 JAVASPACESuuiiieii ettt 63
6.4.1 RESOUICES — JaVaSPACES.....ccuiiiiiieiiiieeeii e 63
6.4.2 BOOKS — JAVASPACESvuiiiiiiiiii et 65
6.5 Java Message ServiCe (JMS)ccooviiiiiiiiiiiiee e 66
6.5.1 Resources — Java Message Service (JMS).......cccoeevvvviiiveeeinnnnnn. 66
6.6 Enterprise JavaBeans (EJB).........c.cccoiiiiiiiiiiiii e 67
6.6.1 Resources — Enterprise JavaBeans (EJB)cccccvvvviivieeennnnnn. 67
6.6.2 Books — Enterprise JavaBeans (EJB)............cccccceeeiiiiiiiiiieeeeeninnn, 68
6.7 Extensible Markup Language (XML)cccoeiiiiiiiiiiieeeiiiiiee e 69
6.7.1 Resources — Extensible Markup Language (XML)cccc.u..... 69
6.7.2 White Papers and Books — Extensible Markup Language (XML) 72
6.7.3 Educational Materials — Extensible Markup Language (XML).....75
6.7.4 Frequently Asked Questions (FAQ) — Extensible Markup
Language (XIMIL)ooueii e e e e e e eae 76
6.7.5 Tools— Extensible Markup Language (XML)...........ccccevvvviiiiennnnns 77
6.8 DIl COE (Defense Information Infrastructure Common Operating
ENVIFONMENT) ... e e e e e e e et e e e e et e eaeaes 79
6.8.1 Resources — DIF COE ... 80
6.9 Unified Modeling Language (UML)cooouiiiiiiiiiiiie e 83
6.9.1 Resources — Unified Modeling Language (UML).............ccceevne. 83
6.9.2 Books — Unified Modeling Language (UML)cccovviieieeennnnnn. 84

6.9.3 Frequently Asked Questions (FAQ) — Unified Modeling Language
(UML) 85

6.10 CoOnstructive COTS (COCOTS) ..cciiiiiiiieiieiii et 86
6.10.1 Resources — COCOTS 86
Essential Reading on COTS ... 87
Concluding REMAIKSuiiiiiiii e e 89
RETEIENCES ... s 91

COTS: A Survey Data & Analysis Center for Software

List of Figures

Figure 1. An Actual COTS PrOCESScccvvuiiiiiiiiiiieeeeii e 17
Figure 2. COTS INteraction TYPES ...cciviviiieiiiiiii e e e e e e aaaaas 24
Figure 3. The new Proposed COTS PrOCESS.ccccvuviiiiiiiiiiiieeeeeiiie e e eeeeans 39

COTS: A Survey Data & Analysis Center for Software

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.

List of Tables

Origin and Modifiability of COTS. ... 4
COTS Characteristics and Process Phases Impacted................cccouuee... 6
Example of COTS. . e 8
Layers of Interaction Incompatibilities.iiiiiiiiii e 21
COTS Integration TECNNIQUES........covviiiii e 27
Black Box Testing TEChNIQUES.cocvuiiiieiiiiiii e 30
COTS Unit Testing TeChNIQUES.coevviiiiiiiiic e 33
COTS Integration Testing TeChniqUES.ccoeviiiiiiiiiiii e 35

Vi

COTS: A Survey Data & Analysis Center for Software

List of Acronyms

ACC Architecture Coordination Council
APl e Application Program Interface
BDK e JavaBeans Development Kit
CAIFTW Lo C41 for the Warrior
CASE ..., Computer Aided Software Engineering
CMM e Capability Maturity Model
COCOMO ...t COnstructive Cost MOdel
COCOTS e COnstructive COTS
COM e Component Object Model
CORBA......oe e, Common Object Request Broker Architecture
O T S Commercial Off -The -Shelf
DIl COE Defense Information Infrastructure Common Operating Environment
DCOM ..o Distributed Component Object Model
DOD ... Department of Defense
DO Distributed Object Technology
o | P Enterprise JavaBeans
ERP Enterprise Resource Planning
FAQ o Frequently Asked Questions
FAR . .o Federal Acquisition Regulation
GCCS . Global Command and Control Systems
GBS S Global Combat Support System
GO T S Government Off-The-Shelf
Gl Geographic Information Systems
] O PSSP Input/Output
/O e Global Command and Control Systems
IPESO....iiiiiiiieceeie e, Information Processing Engineering Support
JAVA/RMI....iiiiiiic e Java Remote Model Invocation
JC P e Jini Technology Core Program
T K e Java Development Kit
IV S Java Message Service
TS T K e JavaSpaces Technology Kit
LAN L Local Area Network
1 PRSP Microsoft
OMG .o Object Management Group
O e e Object Modeling Technique
OO Object Oriented Technology
ORB .o Object Request Broker
S Operating System
O e e Object Technology
RMA .o Reliability, Maintainability, and Availability
SE L s Software Engineering Institute
SEL oo Software Engineering Laboratoratory
STSC o Software Technology Support Center
TAFIM ..o, Technical Architecture for Information Management

vii

COTS: A Survey Data & Analysis Center for Software

TCK e Jini Technology Core Platform Compatibility Kit
UML L. Unified Modelling Language
WAN e Wide Area Network
MWWV e e e e et a e e e e e World Wide Web
XML o Extensible Markup Language

viii

COTS: A Survey Data & Analysis Center for Software

1 Introduction

The world of software development has evolved rapidly in the last decade. In
particular, the use of Commercial Off-The-Shelf (COTS) products as elements of
larger systems is becoming increasingly commonplace, due to shrinking budgets,
accelerating rates of COTS enhancement, and expanding system requirements.
The growing trend toward systems configured of individual components has
taken the original concept of reuse into a completely different arena. It has also
presented many challenges to software developers attempting to enter this new
arena. The SEI describes some of these:

The marketplace is characterized by a vast array of products and product
claims, extreme quality and capability differences between products, and
many product incompatibilities, even when they purport to adhere to the
same standards. [Oberndorf 1997]

COTS software has the potential to save both time and money in the software
development process. Each COTS software component used is less code that
needs to be designed and implemented by the developers. However, the
developer is faced with the problem of ensuring that the COTS product does
perform the functionality that it claims to perform, that it does not intentionally
perform functionality to be harmful to the system, that it will not adversely affect
the system and that it can robustly respond to failures and anomalous inputs to
prevent errors from propagating through the entire system.

Further, the use of COTS products in software development can require a
considerable integration effort. Early estimation of this effort will help developers
to choose the right COTS products and to decide whether to develop their own
software instead of using COTS.

As this change in practices is taking place, many questions have arisen, such as:
how do we modify standard development practices to fit this new development
paradigm; what methods are now effective; how do we quantify the cost savings
expected of COTS use? This report tries to give an answer to these questions.

COTS: A Survey Data & Analysis Center for Software

COTS: A Survey Data & Analysis Center for Software

2 COTS and COTS Systems

2.1 COTS Definition and Classification

The acronym "COTS" stands for Commercial-Off-The-Shelf, so firstly we must
define what is ‘commercial’, and what is 'off-the-shelf'. The official definition of the
term "commercial” is given in the Federal Acquisition Regulations (FARS); the
summary here is (from [Oberndorf 1997]).

A commercial item is:
1. Property customarily used for non-governmental purposes and has
been sold, leased, or licensed (or offered for sale, lease or license) to the
general public;
2. Any item evolved from an item in (1) through advances in technology
and is not yet available commercially but will be available in time to satisfy
the requirement;
3. Any item that would satisfy (1) or (2) but for modifications customarily
available in the commercial marketplace or minor modifications made to
meet Federal Government requirements;
4. Any combination of items meeting (1) - (3) above;
5. Services for installation, maintenance, repair, training, etc. if such
services are procured for support of an item in (1), (2), or (3) above, as
offered to the public or provided by the same work force as supports the
general public; or other services sold competitively in the marketplace;
6. A non-developmental item developed exclusively at private expense
and sold competitively to multiple state and local governments.

As for the term "off-the-shelf," it can mean that the item is not to be developed by

the user but is already existing. Such software can be used as

» development tools (e.g., compilers);

» integral parts of the new system (e.g., libraries);

» both development tools and parts of the new system (e.g., DBMS, compilers
with run-time libraries, OS with APISs).

Even with these more detailed definitions, the term remains very broad. It can
refer to many different types and levels of software, e.g., software that provides a
specific functionality or a tool used to generate code. COTS may be one of the
most diversely defined terms in current software development. Not surprisingly,
different organizations and individuals mean different things for COTS.

We discuss now various characteristics and issues raised by the term COTS:
origin, or who develops it, modifiability, or whether it can be modified or not, cost
and property, its form of packaging, whether it is integrated in the final deliverable
or not, and the type of delivered functionality.

COTS: A Survey

Data & Analysis Center for Software

Table 1. Origin and Modifiability of COTS.

Independent Commercial Oracle Microsoft Office
Commercial Product with Financial
Item Escrowed
Source Code
Special Standard
Version of compiler with
Commercial specialized
Item pragmas
Component Standard
Produced by industry with
Contract custom
systems
Existing Standard gov't Legacy
Components practice with component
from External NDI whose source
Sources code is lost
Component Most existing
Produced In- custom
house systems
Extensive Internal Code Necessary Simple Very Little or
Reworking of Revision Tailoring and | Parameterizati no
Code Customization on Modification

Table 1, proposed by [Carney and Long 2000], considers origin and modifiability
of COTS and reports some examples.

Origin ranges from in-house to external vendor (independent commercial item).
'‘Special Version of Commercial Item' refers to a product developed by a
commercial vendor and slightly modified for a client, where the modification may
or may not be included in the next commercial release of the product.
'‘Component Produced by Contract' refers to subcontracting. 'Existing
Components from External Sources' refers to components that are not developed
internally, and usually not paid for either.

The authors do not discuss the issue of payment / cost/property, that seems to
be sometimes mixed with the origin axis, while in our opinion it should be
discussed separately.

Modifiability is split into five categories. Two of them assume access to code
(extensive reworking, internal code revision), two (necessary tailoring,
parameterization) imply some mechanism built into the COTS to modify its
functionality. The authors report Microsoft Office in the 'Very Little or no
Modification' category. However, this tool suite has a very rich set of mechanisms
to modify it, from simple parameters (where to save files), to initialization files
(templates for documents), to macros, to Visual Basic scripts (that involves
programming). So Microsoft Office can be used as is, or with extensive
modifications. It is an interesting example of a product that can fall into different

COTS: A Survey Data & Analysis Center for Software

categories of modifiability in function of the use one makes of it. In other words,
the classification of a product depends both on the product and on its use.

Cost and Property. The COTS can be obtained for a price or free. Obtaining the
COTS could mean acquiring property of it, or leasing it. 'It' means source code,
executable code, or else, in function of how the COTS are packaged (see
packaging). Related legal / commercial issues are liability for defects contained in
the COTS, and responsibility for maintenance.

Packaging. The COTS can be packaged as

» source code library or program;

* linkable binary library;

» shared library (dynamic linkage library in MS Windows);
» stand-alone executable program;

* combination of the items above

The packaging form usually has an impact on modifiability. Clearly, the source
code can be modified only if it is available. However, sometimes even if source
code is available it is not modified, but used only for documentation and
understanding.

A number of technologies, such as COM, CORBA, DCOM, ActiveX, JavaBeans,
have been defined to standardize packaging and make it less dependent on
programming languages, development environments, operating systems and
networking protocols.

Integration in the Final Deliverable. Considering the product delivered to a
customer or user, a COTS can be integrated in it or not. In the Microsoft Office
example, Office is integrated. If we consider a project developing in C, the C
compiler, CASE tools possibly used for analysis, design, testing, configuration
management, quality assurance, project management, are not. However, some
tools usually associated to the C compiler (i.e., the library of I/O functions) are
probably integrated in the final product.

Type of Functionality. COTS offer a variety of functions, however they can be
classified in two broad categories.

Horizontal. The functionality is not specific to a domain, but can be reused across
many different application domains. Examples are DBMSs, GUIs, networking
protocols, web browsers, etc.

Vertical. The functionality is specific to a domain, and can be reused only in the
domain. Examples are financial applications, accounting, ERP or Enterprise
Resource Planning, manufacturing, health care management, and satellite
control.

COTS: A Survey

Data & Analysis Center for Software

Table 2. COTS Characteristics and Process Phases Impacted.

Characteristics

Effect

Phase Impacted

Risk

No source code

No white box testing

Unit Test, Integration

Reliability cannot be

not developed for
the current project

Several partially
overlapping products
can be available

available No source code Test, Acceptance Test. controlled
inspection
Functionality ready, Low cost Cost Analysis

Immediate/fast
availability

Planning, Requirements

Training/
Familiarization needed

Planning

Architecture,
interaction mechanism
are given, user must
comply

Design, Integration

Incompatibility with
COTS is discovered
late, or is not
solvable

Functionality available
is limited, and only
partially customizable

Requirements

Requirements have
to be dropped

Evaluation and
selection is needed

Requirements, Cost
Analysis

Functionality is
developed by
external vendor

The user has no
influence on
functionality removed
(extreme case: all
functionality is
removed as vendor
goes out of business)

Maintenance

(part of)
Functionality offered

by COTS must be
developed

The user has no
influence and no
control on quality of
functionality

Unit Test, Integration
Test, Acceptance Test.

Reliability cannot be
controlled

The user has no
influence on the pace
of new releases of
COTS (functionality
added and removed,
reliability increased or

Maintenance

decreased)
The user has no Enhancements COTS selected is
influence on suitable today, could

functionality added

not be suitable in the
future if new
functionality has to
be added.

Horizontal COTS have been available on the market for a long time, experience
and know how about them is usually widely available. As a result, using

COTS: A Survey Data & Analysis Center for Software

horizontal COTS is usually less risky and more common than using vertical
COTS.

It should now be clearer that COTS is a broad term, with a variety of more
detailed characteristics. Each of these characteristics can have an impact on a
project, and implies a different set of risks. Table 2 reports COTS characteristics,
effects, development phase impacted, and related risks.

In summary, the characteristics that imply more risks are the unavailability of
source code and the fact that functionality is developed and maintained by an
uncontrollable source. Note that the latter is also what makes the advantage of
using COTS.

Given the immature state of the art, in the literature the term COTS can mean
several different things. For the purpose of this document we restrict the scope of
analysis to:
Origin = independent commercial item or special version of commercial
item
Modifiability = no, or simple parameterization, or customization and
tailoring (in other words, no source code available)
Integration in final deliverable = yes.

With such a restricted scope we can perform a better, more focused analysis.
Further, in industrial cases [Morisio 2000] this category of COTS is the one
mostly used and that generates the most challenging problems. Finally, some
issues are already treated under other headings in the literature. Subcontracting
management is the topic to be considered when a third party develops a product
or part of it, for a customer who then receives the source code and performs the
final integration and maintains the system. Outsourcing could also be a topic to
consider, when the third party develops and maintains the product and the
surrounding services. CASE tools, software development environments are the
keywords for tools that help developing but are not actually part of the final
system. Code generation (compilers and products like Matlab being its more
common implementation) should also be considered.

2.1.1 Examples of COTS

We report here (see also Table 3) some examples of COTS. The SEL COTS
study [Morisio 2000] found that these categories of COTS were used by projects.
» Internet tools and browsers (Netscape Navigator, Internet Explorer, Eudora)
» Orbit determination and control, mission management packages.

Other third party products were used to build applications, but were not
integrated in them. These products are part of the traditional development
process since years and do not raise any peculiar problem to developers.

» CASE tools.

COTS: A Survey Data & Analysis Center for Software

* GUI generators.

* Code generators — C compiler, development environments with libraries,
editors, debuggers and generators (Visual C++, Visual Café, Mathlab,
Mathematica).

Table 3. Example of COTS.

COTS Name Domain/ Functionalities

STK — Satellite Tool Kit Orbit determination and mission planning

Labview Data acquisition, analysis and visualization

Autocon Orbit determination

Altair Mission Control System Mission Control

Probe Data analysis

GensAa (GOTYS) Spacecraft monitoring, commanding, fault
detection and isolation

GTDS (GOTS) Orbit determination

Builder Xcessory, X-Software, GUI, GUI builders

Shared-X, Visual Optimization

package, X Runner

Matlab Computing environment, data visualization,
application development

Outside the scope of the COTS study, studies in literature report usage of these

other categories of COTS.

« Database management systems

* Geographic Information Systems (GIS)

» Office automation software, such as calendars, word processors,
spreadsheets, etc.

» Operating systems, including low-level software such as device drivers,
windowing systems, etc.

» Middleware (or services for communication and distribution)

2.2 COTS and Components

Component is a term now widely used, and probably as ambiguous as COTS.
The relationship with COTS is strict, but COTS and components should be
intended as two different concepts.

Components have evolved in the object-oriented community to mean relatively
large pieces of software (typically comprising many classes and functions). In
one meaning components are (similarly to subsystems) a tool for decomposing a
system. They are also units of composition to assemble a system from parts.

In this sense a more formal definition is

COTS: A Survey Data & Analysis Center for Software

unit of composition with contractually specified interfaces and explicit
context dependencies only. Components can be deployed independently
and are subject to composition by third parties.

A characteristic often associated with components is 'independence from the
context', where context means programming language, operating system, user
interface, networking services, database and transaction services. A container is
charged with hiding the implementation of these services while offering them to
components in a standardized way. Ideally, a component can be plugged and
work in any container. While this is more a target than the current situation, the
concept of clear interfaces and defined dependencies from the context is shaping
both industrial and research proposals. Hence the burgeoning of packaging and
interface specifications for components, like CORBA, JavaBeans, EJB
(Enterprise Java Beans), COM/DCOM, etc.

On the other hand COTS are not usually expected to have the independence
from the context that components should have. In summary, not all COTS are
components, while some components are COTS (i.e., they are produced by third
parties).

2.3 COTS-System Definition and Classification

We have discussed above what constitutes a COTS. COTS are usually parts
used to build larger systems. Here we change point of view, and we consider the
system instead of the part.

A COTS-system is a computer based application that integrates one or more
COTS. Carney [Carney 1997] identifies three types of COTS systems in function
of the number of COTS used and their influence on the final system.

» Turnkey systems are built around a (suite of) commercial products, such as
Microsoft Office or Netscape Navigator. Only one COTS is used, and
customization does not change the nature of the initial COTS.

* Intermediate systems are built around one COTS (ex., Oracle) but integrate
other components, commercial or developed in house. The central COTS is
the main part of the system, but integration of other components is key.

* Integrated systems are built by integrating several COTS, all on the same
level of importance. The final system is not dominated by any single COTS,
integration is the key to building the system.

COTS: A Survey Data & Analysis Center for Software

10

COTS: A Survey Data & Analysis Center for Software

3

Issues in COTS-Based Development

The pros in using COTS are easy to list and understand.

Functionality is ready and available. The cost to buy the functionality is
usually a fraction of the cost to develop it in-house. The delay to have the
functionality is much lower too. And far less resources (personnel, know
how and machines) are needed. The un-measurable sense of frustration
implicit in redeveloping what is already available is avoided too.
Functionality is tested and working. The functionality has already been
used, possibly by a large community of operational users, and debugged
extensively.

Maintenance is made by the vendor. Again, cost, schedule and resources
paid to the vendor for maintenance are usually a fraction of the cost for
doing it in-house.

However, a number of cons, or at least issues, are increasingly apparent to the
community of COTS users.

No access to source code. No modifications are possible, no quality
assurance techniques that require code can be applied by the user.

No control over the requirements for the COTS. A single user has little or
no control on the requirements implemented by the COTS. Actually, the
vendor does not master completely the requirements either, as its goal is
probably to satisfy the largest or richest possible market. Requirements
are just subject to market forces.

No control on the quality of the COTS. The COTS can contain faults, but
the vendor decides when and whether to fix them. In general, also the
availability and quality of documentation, training, consultancy, and
support for the COTS are in the hands of the vendor. Documentation can
be inconsistent with the COTS, promised functionalities can be missing
(‘vaporware’).

No control over COTS updates. This is a problem of periodic updates of
COTS products, which can be costly or even inconsistent. Different
versions of COTS products may not be compatible causing additional
problems for developers [Swanson 1997].

Inflexibility of the COTS. The COTS can be hard to adapt to the need, or
not adaptable at all [Fox 1998].

Flexibility in requirements. No control over the requirements for the COTS
and inflexibility of the COTS means that the user must be flexible in his
requirements, otherwise the COTS is not usable. Some functionality in the
COTS could be an approximation of what is needed. In other words, the
user must trade off schedule or cost for requirements [Morisio 2000].
Learning curve. Although the COTS offers ready functionality, developers
must become familiar with it to be able to use it. The more complex the
COTS, the longer the familiarization period.

11

COTS: A Survey Data & Analysis Center for Software

It should be noted that several of the issues listed above are not peculiar to
COTS only, but are relevant for in-house development too. Learning is necessary
whenever a new person joins the staff, the source code could be available but so
complex to be virtually untouchable, resources and know-how could be
unavailable to develop new requirements, documentation unavailable or
inconsistent or not in sync, key staff capable of offering consulting and training

gone. However, some of these issues can be worsened by the interaction with a
third party like the COTS vendor.

To give more insight on these issues we report now an actual process followed
by COTS projects and the issues they faced.

3.1 An Actual COTS Process

In 1996 and 1997, 15 projects using COTS were studied through questionnaires
and interviews by the NASA Software Engineering Laboratory (SEL) [Parra 1997,
SEL 1998] with the purpose of understanding the actual process used and the
issues encountered. The process phases are the following (see also Figure 1).

Figure 1. An Actual COTS Process.

External
Information L

Vendor

N

Identify i

Glueware and Wrie
Integration Glueware

Requirements and

Interfaces

Identfication
Evaluaion/
Selecion

Integrafon
and
Test

Discrepancgy

Requirements
Analysis

Resolution

Requirements
Review

Target
Non-COTS Sy;tem
Development Installation and

Acceptance
Test

Sustaining
Engireering

v

Key:
______ information flow — bidirectional heck .
process check or review process
» sequence @ O
A hard requirements traditional waterfall development [] separateentity

* Requirements Analysis

The earliest steps in COTS-based development are similar to traditional
development—requirements gathering. In the requirements phase a strong
emphasis is on gathering external information. Much of this information comes
from separate organizations. Some project requirements are predefined, with

12

COTS: A Survey Data & Analysis Center for Software

minimal requirements analysis needed. Early reviews of the requirements are
crucial, even with a less formal process.

» System Requirement Review
This is the first verification step, aimed at checking the completeness and
feasibility of system requirements.

» COTS Identification, Evaluation, and Selection

COTS identification consists of Web searches, product literature surveys and
reviews, identification of other reusable system components, and
recommendations from external sources. Product information is kept in a central
justification notebook, or an evaluation notebook. Not only are product evaluation
notes kept, but subjective comments concerning vendor quality and
responsiveness are also kept.

As COTS are identified, the evaluation and selection processes begin. COTS
evaluation steps include prototyping, vendor demonstrations, and in-depth review
of literature such as manuals and user guides. Vendor training sites and
availability are considered. Procurement issues surface such as development
fees for added requirements, licensing and maintenance fees, and sustaining
engineering support.

» Identify Glueware and Integration Requirements

Glueware and interfaces as dictated by the system architecture, operating
system and hardware are identified.

» System Design Review

This second verification step deals with System Design. Only some teams held it
formally, but all teams mentioned some mechanism to apprise the customer of
the design.

* Non COTS Development — Write Glueware and Interfaces

Most projects studied have an element of traditional development that does not
depend on COTS or other packages. This development begins in parallel with
the early COTS-related steps, as in a traditional development project. Non-COTS
cost and schedule are monitored. There is a bi-directional information flow
between the COTS-based process flow and the non-COTS development that
comes into play in the Design Review.

After the Design Review, whether it is formal or informal, traditional non-COTS
development continues in parallel with the coding of the glueware and the
interfaces. Close contact with the vendor technical staff, or a competent Help
Desk is essential during this development.

* Integration and Test

The integration step varies a great deal from project to project, depending on
which and how many COTS products are being used. At system integration and
testing the COTS packages are treated as black boxes. The teams commented
that testing focused on the interface glueware and the format and correctness of

13

COTS: A Survey Data & Analysis Center for Software

the input files. Again, the importance of availability of the vendor technical staff or
Help Desk was emphasized. Testing is usually conducted piece-by-piece, as
each software component is integrated.

» Target System Installation and Acceptance Test

Unlike the traditional life cycle, no formal acceptance testing or operational
readiness reviews were mentioned by the teams. The development team installs
the software on the target system.

» Discrepancy Resolution

Once installed, navigational training to familiarize the customer with the system is
conducted. During this phase, a member of the development team is the single
point-of-contact or intermediary between the customer and the vendor. This
person is responsible for reporting discrepancies, and handling software
“patches” or corrections. Interviewees mentioned that software patches were
placed on vendor Web sites and were then downloaded to the target system.

e Sustaining Engineering

The end of the configuration process is marked by the sustaining engineering, or
maintenance, effort. No team that the study team interviewed had reached this
stage.

The study revealed some interesting patterns. For example, it had been expected
that vendor interaction would be simple, and would end with the purchase of a
product. In reality, the interaction continues throughout the life cycle and the flow
of information is not merely one way (see the dashed lines in Figure 1). Also,
there is a strong dependence on bi-directional information flow.

Also shown is a more constant involvement with separate organizations, such as
other projects using COTS, independent evaluation teams, and other customers
of the vendor. Another complication is that portions of the COTS-based systems
include traditionally developed software.

In summary, COTS projects were obliged to follow a process quite different from
traditional projects, with more effort put into requirements, test and integration,
and less in design and code. We can identify three types of differences.

* New activities: product evaluations, product familiarization, vendor interaction
(of technical, administrative and commercial kinds). The related new roles are
the COTS evaluation team and a team member responsible for interactions
with the vendor.

* Reduced activities: coding, debugging, unit testing, code inspections.

* Modified activities: design focused more on how to fit pieces together rather
than the internal workings of different modules. Architecture issues
(compatibility, configurability and integrability) must be considered.

These differences have several implications.
* New activities require new professional skills and guidance.

14

COTS: A Survey Data & Analysis Center for Software

* Project estimation and tracking are less effective, as during estimation new
activities tend to be overlooked or underestimated, and in tracking they are
not reported, or reported under the ‘other’ category. This is what happened in
early COTS projects, all reporting an ‘other’ effort well above average.

* Processes tend to be looser. Because much of the standard SEL
recommended process did not apply to COTS-based development and
schedules were very tight, project personnel felt freer to loosen the process
requirements.

3.2 Major Issues.

Several observations reported in the SEL study can be summarized in two major
issues: dependence on the vendor and flexibility in requirements. These issues
are seen as conditions that a COTS project must accept, consciously or not, as a
trade-off with expected gains in schedule, effort and cost. Managing these
tradeoffs is crucial to the success of a COTS project.

COTS-based development introduces a dependence on the vendor, who is the
ultimate decision maker on the functionalities available, the schedule for
releases, the architecture, the reliability level, the documentation, and the service
level. Consequently, the purchaser has little or no influence on the above issues
as they affect the application.

Some of the related problems identified by project leaders were:

» Slippage in schedule because of delays in releasing the COTS by the vendor
(typically the delay is between the beta version and the official release).

» Documentation on the product is not available, or incomplete, or not reliable.
* The learning curve with the product is hard to estimate.
* “Vaporware,” i.e., some functions are promised but never implemented.

* Moadifications made by the vendor can alter the compatibility of one COTS
with other COTS, or the rest of the system, or introduce new bugs. However,
for several reasons the purchaser could be obliged to upgrade to the new
version.

« Communication with the vendor can be one way, with many questions but no
answers.

The most common risk mitigation strategies reported were having a close
relationship with the vendor; and having a backup plan if the COTS fails (e.qg., a
second choice COTS or internal development).

COTS projects must also accept flexibility in requirements. At the moment a
COTS is selected, some requirements are immediately satisfied, some other
requirements become easy to implement, and others become difficult if not
impossible to obtain. Since the typical goal of a COTS project is to reduce (cost,
effort or schedule) as compared with a traditional project, the project must be
ready to give up the latter category of requirements. In other words, the COTS

15

COTS: A Survey Data & Analysis Center for Software

selected drives the requirements to at least some extent. Some projects
interviewed reported they ended up writing (sometimes rewriting) requirements
after the COTS was selected. Others reported integration problems later in the
project when requirements and COTS selection were not coordinated upfront.
Still others reported major conflicts when they had little control over either system
requirements or COTS selection (i.e., both were mandated from some other
organizational unit). On the other hand, sometimes functionality was discovered
in a COTS that was useful, even though the project had not originally planned to
use it. Effectively managing the tradeoff between requirements and COTS
selection seems to be a key to avoiding problems downstream, and to realizing
the benefits of COTS.

16

COTS: A Survey Data & Analysis Center for Software

4 Techniques and Methods for COTS

This chapter is dedicated to presenting and discussing methods and techniques
useful to tackle the problems listed in the previous chapter. Methods and
techniques are listed under the process phase that more likely uses them.

4.1 Requirements

4.1.1 COTS Selection

Selecting a COTS is a decision that impacts requirements and design. It

encompasses several sub-activities:

* COTS Identification. COTS should be identified with any possible practical
means. Web research, specialized literature and exhibitions, peers
suggestions.

* COTS Evaluation. The goal of this activity is to reduce the number of COTS
among which the selection will be made to two or three, assuming to start
from a set of half a dozen to a dozen. Information on these COTS is acquired
through reading documentation, assisting to demonstrations, asking
guestions to the vendor. The evaluation should be formalized by using
specialized techniques such as weighted average sums [Vincke 1992],
feature analysis [Kitchenham 1997], analytic hierarchy process [Saaty 1980,
Kontio 1996], and outranking techniques [Morisio 1997, Stamelos 2000].

While weighted average sums are the most popular technique used, it should be
made very clear that each technique has constraints of application, so that no
one technique can be used meaningfully in all cases. Conversely each evaluation
case has specific goals and context that should drive the selection of a suitable
evaluation technique. The common point to all techniques is that COTS are
scored on a number of characteristics (or features, or attributes), then the scores
are aggregated to rank COTS. Typically scores are given to the degree to which
a COTS satisfies a given requirement (functionality or non-functional
requirement).

Weighted average sums require ratio scales for the attributes. This excludes
them from the most popular case of use, judgments like ‘satisfies fully, satisfies
fairly, does not satisfy’ that are on an ordinal scale. It should be recalled that
even if these judgments are expressed in a numeric scale like 3,2,1, the scale
remains ordinal.

The analytic hierarchy process requires that attributes are independent, another
condition that is not easy to satisfy in COTS evaluations.

Outranking techniques are less popular, but can be very powerful as they allow
the evaluator to state "product A is better than / is equivalent to product B on
attribute X". Usually an evaluator finds it more convenient to express a relative
judgment than an absolute one. Further, a profile for an ideal product can be

17

COTS: A Survey Data & Analysis Center for Software

generated, then real COTS can be compared with it. Another advantage of
outranking techniques is the capability of considering the evaluation process as a
team activity by accepting scores from several stakeholders and aggregating
them in various ways.

In many cases cost happens to be an important parameter in the selection.
Nearly always in a project cost is traded for something else (functionality, quality,
schedule). Therefore we suggest to keep cost separated from the evaluation, and
to consider explicitly and formally any trade-off. Cost related issues are taken into
consideration in the Project cost estimation activity.

* COTS Familiarization. Since the previous activity has reduced the number of
candidates to two or three, it is now possible to use them for a while, until a
good degree of familiarity is gained. The means to achieve this familiarity is
using a demo version of the product.

 COTS Selection. The two or three topmost COTS are reevaluated with the
same techniques used in COTS evaluation, but with much more insight as
gained in COTS familiarization. A winner is defined. Project cost estimation is
updated in function of the COTS selected. Reasonably what-if simulations are
carried on with each of the topmost COTS, meaning that this is the time to
merge project cost and COTS selection.

* COTS Purchase, Licensing. Finally, the COTS is purchased. In case of
multiple licenses, the purchase and licensing process should be supported by
specialized entities capable of obtaining substantial discounts [Reifer 1999].

4.1.2 Requirements and COTS Selection.

It is very hard to clearly separate these two activities, actually they go on in
parallel. An initial requirements analysis clarifies the type of COTS that could be
more suitable for the project. More in-depth analysis of COTS excludes some of
them and proposes others. Selecting a COTS impacts the set of requirements
gathered, some of them become easily satisfied, some more are included ‘for
free’ in the COTS, some more could be identified as a consequence of the COTS
selected.

An issue is the level of detail where to stop the analysis of requirements

provided by a COTS. Ideally, the level of detail is the same as if the requirements
would be satisfied by newly written code. In practice, when a COTS is selected,
the tendency is to stop further analysis of requirements offered by the COTS and
use it as the de facto description of such requirements. However, this approach
implies that the COTS acts as driver of requirements, not the customer, and
should be clear to both the customer and the project manager.

18

COTS: A Survey Data & Analysis Center for Software

4.2 Design and Integration

The more a project is COTS intensive, the more design deals with how to
integrate COTS together, solving possible inconsistencies among them. We
discuss here design representations, integration incompatibilities, and integration
techniques.

4.2.1 Design Representation

The Unified Modeling Language (UML) [Fowler 1997, Rumbaugh 1998] is not
only an OMG (Object Management Group) standard, it is also becoming the de
facto standard notation to document designs. Using it to document designs of
COTS-based systems is therefore natural. The Catalysis method [D’Souza 1998]
takes this point of view and marries UML with component based development
(remark however that Catalysis considers components and not COTS, see
section 2.2).

Component based development for Catalysis means building a family of software
products from a kit of components. Some of the components may be adapted
from existing systems. Some can be bought (or COTYS).

The idea is that components should be pluggable together in different ways,
rather like hardware components. This requires a small number of standard
interfaces compared to the number of components: each component has one or
more interfaces that can be connected to any other.

Catalysis provides:

» interface specification — allowing a chief architect to specify an interface
standard, and third parties (who don’t know each other) to make components
that will interoperate with each other

» techniques to define component ‘connectors’ abstracting above the level of
OO0 messages (sort of like multi-pin plugs);

» ‘retrieval’ techniques for relating the differing models that different
components (especially bought-in or legacy components) usually have.

4.2.2 Integration Incompatibilities

A serious challenge for COTS integration can be a difference in architectural
assumptions among different COTS products, and between the COTS products
and the target system [Davis, Williams 1997], [Garlan et al. 1995], [Shaw 1995].
It was determined that using just four COTS products in one project with different
architectural styles can increase the effort considerably [Garlan et al. 1995].

The first step in solving this problem is understanding and classifying the
incompatibilities. Yakimovic [Yakimovic 1999] splits the problem into two parts:
understanding and classifying interactions, and understanding and classifying
inconsistencies.

The COTS interact with other system components, and with the system
environment. The system components can be either software or hardware

19

COTS: A Survey Data & Analysis Center for Software

(excluding everything related to the environment, such as CPU and memory, but
including devices directly controlled by the system, such as on-board devices)
that are used by the system. The environment can be of the development phase,
which includes compilers, debuggers, and other development tools; or it can be
the environment of the target system, which includes Operating Systems, virtual
machines (Java), interpreters (Basic), and other applications and utilities used by
the target system. The parts of both environments can also be considered
components. Figure 2 shows the different perspectives that can be used to
classify these software component interactions.

Interactions with

/ ~N

System Environment

Software Hardware Development Target

Figure 2. COTS Interaction Types.

Two main layers can be distinguished in the inter-component interactions:
Syntax, defines the representation of the syntax rules of the interaction,
e.g., the name of invoked function; the names, types, and the order of the
parameters or data fields in the message, etc.;

Semantic-pragmatic, defines the semantic and pragmatic specification of
the interaction, i.e., what functionality and how is performed by the
component, e.g., invoking the function "SQRT" calculates the square root
of its only argument and returns it to the caller. However, in this work we
do not consider semantic and pragmatic issues separately.

An incompatibility can occur either because of syntactic difference between two
components, or because the interaction does not perform correct functionality
due to some semantic or pragmatic issues. Further, incompatibilities on the
semantic-pragmatic layer can be classified according to the exact number of
components that caused the interaction to fail. Therefore, the following types of
semantic-pragmatic incompatibilities can be considered:

» l-order semantic-pragmatic incompatibility, or an internal problem, if a
component alone has an incompatibility. For example, a component does not
work properly, because of not matching the requirements or an internal error.

» 2-order semantic-pragmatic incompatibility, or a mismatch, if an
incompatibility is caused by interaction of two components. For instance, a
procedure that calculates the square root of a real number receives a
negative argument from a caller; when it supposes that this is a proper

20

COTS: A Survey

Data & Analysis Center for Software

argument (it is important that the caller does not have a 1-order

incompatibility).

» N-order semantic-pragmatic incompatibility, or a conflict, if an incompatibility
is caused by interactions of several components. For instance, several
processes that together require more memory than the available amount,
although each of them can be satisfied independently, they together cause a

n-order incompatibility on the semantic-pragmatic layer in hardware

interactions.

Table 4. Layers of Interaction Incompatibilities.

Type of component System Environment
Type of Incompatibility Software | Hardware | Developme | Target
nt
Syntax S.1 H.1 D.1 T.1
Sematic-pragmaticl-order S.2a H.2a D.2a T.2a
Semantic-pragmatic 2-order S.2b H.2b D.2b T.2b
Semantic-pragmatic n-order S.2¢c H.2c D.2c T.2¢c

Thus, according to the assumptions above, syntactical and semantic-pragmatic
incompatibilities can occur in the system and environment dimensions. We can
use Table 4 to capture this classification, where the cells are described below.

S. Interactions with Software

S.1. Syntax:

S.1.a. different types of information flow, e.g., control instead of

data.

S.1.b. different types of binding: static, dynamic compile-time,

dynamic run-time, topological, etc. As the result a component can
not find another one.

S.1.c. different interface protocol: different number of parameters or
data fields, or different types of parameters or data fields.

S.2. Semantic-pragmatic:

S.2.a. 1-order: internal problem. These incompatibilities appear
when the COTS product does not match the required functionality
(e.g., a function performs addition instead of multiplication), or due
to its poor quality it still does not work properly (an internal error).
On the other hand, it can be other software that is solely
responsible for the failure of interaction with the COTS product.

S.2.b. 2-order: different assumptions between two components,
including the synchronization issue. These incompatibilities are
products of mismatch between the COTS product and other
components surrounding it. Even when two components have

21

COTS: A Survey Data & Analysis Center for Software

correct functionality they can fail to work together due to some
differences. (e.g., one object expects to receive the size of an angle
in radians, but another sends the size in degrees, hardly can the
result be correct; another example is a mismatch between an
asynchronous and a synchronous component).

S.2.c. N-order: a conflict between several software components.
Even when the COTS product works correctly itself and correctly
interacts with other components, some incompatibilities can appear
as the result of a combined interaction with several other software
components. (e.g., an object that controls rotation of a spacecraft
receives the command for rotating on n degrees from an
commanding object, but occasionally there is another commanding
object, which sends the same command at the same time, in the
system. Every single interaction is correct, but the spacecraft
rotates twice as fast as it should.).

H. Interactions with Hardware
H.1. Syntax:
H.1l.a. different type of protocol. A software component can not
work with a piece of hardware, because they assume different
protocols (e.g., TCP/IP and Decnet).

H.2. Semantic-pragmatic:
H.2.a. 1-order: wrong functionality of hardware or the COTS
component. A hardware component does not work correctly (e.g., a
printer does not support the Cyrillic alphabet), or the COTS
component causes a failure.

H.2.b. 2-order: different assumptions between software and
hardware. An interaction between software and hardware
components does not work correctly (e.g., a program tries to print a
Cyrillic text, but the printer has a different coding for the Cyrillic
alphabet, therefore the output will be unintelligible).

H.2.c. N-order: a conflict between several software components
over hardware. An interaction among several software components
and a hardware component does not work correctly (e.g., several
applications simultaneously accessing a single printer).

E. Interactions with the Development Environment
E.1. Syntax:
E.1.a. Different component’s representation. The environment does
not understand the packaging of a software component (e.g., aC
program can not be compiled by a Fortran compiler).

22

COTS: A Survey Data & Analysis Center for Software

E.2. Semantic-pragmatic:
E.2.a. 1-order: wrong functionality of the environment or the COTS
component. The environment does not work properly (e.g., a defect
in the compiler version), or the component has an error (e.g., a
program can not be compiled because of a syntax error in it).

E.2.b. 2-order: different assumptions between the software
component and the environment. A software component cannot
interact with the environment (e.g., a program is written in an old
dialect of a language and can not be compiled by a newer
compiler).

E.2.c. N-order: a conflict between several software components
over the environment. An interaction among several software
components and the development environment causes an
incompatibility (e.g. two or more C modules can not be compiled or
linked together because of a name collision).

T. Interactions with the Target Environment
T.1. Syntax:
T.1.a. Platform type. The environment does not understand the
packaging of a software component (e.g., a program uses another
OS, or an interpreter can not run an program written in another
language).

T.2. Semantic-pragmatic:
T.2.a. 1-order: wrong functionality of the environment or the COTS
component. The environment does not work properly (e.g., the OS
crashes), or the component has an error (e.g., a memory violation
in a program).

T.2.b. 2-order: different assumptions between the software
component and the environment. A software component does not
interact with the environment correctly (e.g., the OS version
performs some functions used by the component in a way other
than expected by the component’s developers).

T.2.c. N-order: a conflict between software components over the
environment, including the control issue. An interaction among
several software components and the environment causes an
incompatibility (e.g., a conflict between two object-oriented
frameworks in a one-process program for the control flow [Sparks
et al. 1996]).

23

COTS: A Survey Data & Analysis Center for Software

4.2.2.1 Solution Strategies

Different incompatibilities have different solutions, but generally we can find five
groups of related problems with the proper solution strategies. We assume that
one type of incompatibilities can cause problems in different groups. For
example, a syntax software incompatibility can cause different types of binding,
which can require a special architectural solution for the whole system, or it can
be just a different order of parameters, which can be overcome by a simple
wrapper. Thus, we can differentiate the following groups of integration problems:

* Functional. All the 1-order semantic-pragmatic incompatibilities that are
caused by missing or wrong functionality. Re-implementation or modification
of faulty components can solve these problems.

Example. A graphics library does not provide a function for drawing circles.
So it can be re-implemented using a function for drawing pixels.

* Non-functional. Some 1-order semantic-pragmatic incompatibilities can be
caused by not matching to non-functional requirements, such as reliability,
maintainability, efficiency, usability, etc. These problems are difficult to solve
without reworking the component.

Example. A sorting procedure is implemented using a relatively slow bubble-
sort algorithm (o(n?)). To make it faster this function can be re-implemented
using the quick-sort algorithm (o(n*In(n))).

» Architectural. These issues constitute another class of problems and can
cause changing the overall system’s architecture, but the incompatibilities
causing them are different. We consider the following architectural
assumptions of software components with their respective incompatibilities:
packaging (syntax development and target environments), control (n-order
semantic-pragmatic target environment), information flow (syntax software),
binding (syntax software), synchronization (2-order semantic-pragmatic
software).

Example. Java and C programs are to be used together in one system. Since
they can not be compiled or linked together (different packaging of these
programs), the resulting system will consist of two independent programs:
Java and C that can interact through means of operating system, e.g., the C
program can read requests from a file written by the Java program.

* Conflicts. Problems of this type are conflicts between components in the
system (e.g., deadlocks). The related incompatibilities are n-order semantic-
pragmatic software and hardware. The possible solutions can include
changing the system’s configuration without changing the overall architectural
type (minor architectural changes, including monitoring components) and
using glueware.

24

COTS: A Survey Data & Analysis Center for Software

Example. Two message-based programs are to be used in one system. To
prevent their conflicts over the incoming messages, a special monitoring
component can be added to the system. This component will accept all
messages coming to the system and send them to the proper program.

 Interface. These problems are incompatible interfaces between the
components caused by some syntax and 2-order semantic-pragmatic
software and hardware incompatibilities (other than major architectural). The
possible solution is glueware.

Example. One program calls function “sqgrt”, meanwhile the mathematics library
provides function “Sqgrt” (just another name). The following piece of glueware
(wrapper) can be used to solve this problem: float sqrt(float x) { return Sqrt(x); }.
This function will provide a compatible interface for the program to call the library
function.

4.2.3 Integration Techniques

Integrating COTS components into a functional system presents new challenges.
The problems that arise with COTS integration are very similar to those seen in
general with software reuse [Shaw 1995]. Since different components are written
by different vendors with different needs in mind, they may need to be adapted to
work properly together [Haines].

As discussed previously, COTS can suffer from general inter-component
mismatches, for example, of representation, communication, packaging,
synchronization, semantics, control, and other properties [Shaw 1995]. To
overcome these mismatches between the components A and B the following
techniques can be used [Shaw 1995]. However, not all of them can work for the
black-box reuse (A and B in these examples are symmetrical, and it is usually
possible to consider that A is a COTS software component and B is an in-house
component):

1. Change A's form to B's form: completely rewriting one of the
components to work with the other. Rewriting an in-house component
in order to match the COTS component is feasible, but it can be very
expensive depending on the in-house component.

2. Publish an abstraction of A's form: APIs publish the procedure calls
used to control a component. Open interfaces usually provide some
abstractions too. Feasibility of this approach depends on whether an
abstraction of a COTS component is available.

3. Transform from A's form to B's form on the fly: some distributed
systems do on-the-fly conversions from big-endian (the most
significant byte of a word is stored first) to little-endian (the most
significant byte of a word is stored last) representations. This approach

25

COTS: A Survey Data & Analysis Center for Software

may require very intellectual and expensive software for on-the-fly
conversion.

4. Negotiate to find a common form for A and B: modems commonly
negotiate to find their fastest common protocol. This seems to be
achieved for hardware only at this time.

5. Make B multilingual: portable Unix code will run on many processors.
Implementing multilingual in-house software is feasible, but can be
expensive.

6. Provide B with import/export converters: some applications provide
representation conversion services. This can work if there are
representation mismatches (data format, etc.).

7. Introduce an intermediate form: it can be used as a neutral base for
components with different representations. Feasibility of this technique
will depend on whether the COTS component supports an intermediate
form.

8. Attach an adapter or wrapper to component A: some code can be
written to leverage the difference between the interacting components.
Writing a wrapper is a flexible solution; the wrapper can be tailored for
any particular mismatch.

9. Maintain parallel consistent versions of A and B: A and B can maintain
their own different forms. This depends on the availability of parallel
forms of COTS software. Maintaining parallel forms for in-house
software can be a problem as well.

Three techniques to adapt the COTS component are to wrap the component in a
software container, use glueware to mediate component interactions and using
bridges or adaptors to smooth over incompatibilities in the component interfaces
[Brownsword et al. 1998]. These are all black-box techniques that can be
applied without access to the COTS component source code.

Wrappers are software containers used to mediate access to the COTS
component. They can be used to force compliance to programming standards,
provide a standard interface to the COTS component can be swapped out to and
upgrade or different vendor or restrict the available functionality of the COTS
component [Vigder Dean 1997].

Glueware is used as middleware to bind components together. It can be used for

control flow, to invoke the component’s functionality and do exception handling
[Vigder Dean 1997]. This can also include code to resolve incompatibilities

26

COTS: A Survey

between two components.

Data & Analysis Center for Software

By acting as an adaptor or bridge, the glueware can

allow the interaction of two components [Vigder Dean 1997].

Table 5. COTS Integration Techniques.

Technique Goal

Wrapper Mediate access to the COTS component,
provide standard interface, restrict access

Glueware Bind components together, exception
handling, control flow

Adaptor/Bridge Resolve incompatibilities in component
interfaces

4.3 Testing

Testing is the process of reviewing a software process artifact with the intent of
finding errors.

COTS software has the potential to save both time and money in the software
development process. Each COTS software component used is less code that
needs to be designed and implemented by the users (in this paper the user is
defined as the buyer of the COTS product). However, the user is faced with the
problem of ensuring that the COTS product does perform the functionality that it
claims to perform, that it does not intentionally perform functionality to be harmful
to the system (i.e., Trojan Horse), that it will not adversely affect the system and
that it can robustly respond to failures and anomalous inputs to prevent errors
from propagating through the entire system.

These needs have lead to research in unit testing COTS software, ensuring the
COTS product, standing alone, will perform as expected and COTS integration
testing, ensuring that the combination of COTS and custom software works
together to produce a quality system.

4.3.1 Unit Testing

The goals of COTS unit testing are to ensure the component is functionally
correct (i.e., it does what is specified), externally secure (i.e., the COTS unit will
not carry out malicious commands from input data), internally secure (i.e., there
is no malicious code hiding in the component) and robustly responds to
anomalous inputs (so an error with the input to the COTS product does not
necessarily propagate to the rest of the system). Unit testing of non-COTS
software faces very similar issues and a number of techniques have been

27

COTS: A Survey Data & Analysis Center for Software

created to deal with them. Briefly we will look at some of these techniques in unit
testing and then discuss techniques specific to COTS testing.

4.3.2 Unit Testing Techniques

Unit testing techniques can be classified into two different categories: white box
and black box testing. Black box techniques approach testing from an external
perspective and focus on testing with respect to how the specifications say the
component should behave. White box techniques are drawn from an internal
perspective and deal with testing the logic/structure used to achieve the
behaviors [Hetzel 1984]. White box testing will require access to source code
and design documents, something COTS component users do not have. Black
box testing may only require the requirements the component needs to satisfy,
something the COTS component user could supply.

4.3.3 White Box

Testing the structure of the object is the foundation of white box testing [Beizer
1995]. Reviewing code, requirements or design documents are all examples of
testing, looking at a software process artifact to detect errors. Some strategies
for white box testing include source code statement coverage, branch coverage
and condition coverage. These techniques are effective at ensuring that all the
code has been exercised by the test cases, no malicious code is hiding in the
component and that the structure of the code is well designed. Statement
coverage ensures that every source statement is executed at least once. It does
not, however, require that each statement be executed in each possible state the
code can be in. Branch coverage requires that every possible outcome of a
decision statement must be exercised. Condition coverage requires that every
condition within a decision statement must achieve all possible values at least
once [DeMillo et al 1987].

These techniques, while effective at enumerating errors, are not feasible with
COTS software since the user cannot expect to have any of the necessary
artifacts. At best the user has a set of requirements that the system needs to be
satisfied by the COTS software.

4.3.3.1 Program Slicing

Program slicing is a white box technique that uses data flow and control flow to
produce a trace (slice) through the code that produces a specific behavior
[Weiser 1984]. This slice can be used to reduce the amount of code that needs
to be reviewed to track down a bug found with a particular behavior of the
software. Since this is a white box technique the source code is assumed to be

28

COTS: A Survey Data & Analysis Center for Software

available. The source code is necessary to do the control flow and data flow
analysis. In practice, the slice is produced before program execution and during
execution these statements are watched for bugs [Weiser 1984].

Some work has been done on slicing a program that uses separate compilation
[Weiser 1984]. In this work it has been assumed that when a call is made to an
external module (i.e., one for which you do not have the source available) it
behaves as in the worst case. That is the external module is assumed to
reference and change any external variable available to it [Weiser 1984].

Program slicing has also been applied as a software maintenance technique
[Gallagher 1991]. Before a change is made it is applied to relevant slices to try to
determine what effect the change will have on the behavior of the software. The
authors claim this process can do away with regression testing as long as the
changed slices produce the required behavior.

4.3.3.2 Fault Injection

Fault injection serves to determine how the software system will respond to faults
arising during operation. These faults can include corrupted memory, failure of
operating system subroutines or invalid input from a sensor, among others. The
idea is to inject the faults that are possible and probable to encounter in the real
world operation of the system. A fault tolerant system should be able to recover
from some degree of these faults, with emphasis on some safety critical
component not failing, i.e., medical devices, in a drastic way, i.e., harming the
patient.

There are various ways to implement fault injection in software. Some common
practices include wrapping the software in a container that muddles the output to
other components, using debuggers to corrupt memory by overwriting portions of
data or inserting extra instructions at compile time to corrupt the operation of the
code.

With respect to COTS software, there is no chance to recompile the code, but
certainly it can be wrapped and forced to produce bad outputs or given
erroneous inputs. A good debugging tool could also be used to corrupt needed
data, specifically argument lists after they have been passed to the software
component. It would be difficult with COTS software and lacking the source code
to corrupt specific data items.

4.3.4 Black Box

Black box testing techniques are characterized by focusing tests on the
expected behavior of a software component and ensuring that the resulting

29

COTS: A Survey Data & Analysis Center for Software

functionality is correct [Beizer 1995]. In many cases this behavioral testing is
done without the aid of source code or design documents. It is possible to
provide input test cases and only test the outputs of the object for correctness.
This type of black box testing does not require knowledge of the source code and
S0 is possible to do with COTS components.

Strategies for black box testing that may be effective for COTS components
includes test case generation by equivalence classes, error guessing and
random tests. Equivalence classes minimize the number of tests necessary by
representing the input space of the component by a few test cases that cover the
entire set of possible inputs. Error guessing involves listing possible errors that
could arise and generating test cases to ensure that these errors do not in
practice happen [Beizer 1995]. Random testing involves randomly selecting input
values from the entire input space of the component. It has been suggested that
these random values should be chosen to reflect the expected operational input
distribution [DeMillo, et al 1987]. They also should reflect previous experience
with similar components and systems and the bugs found in them [Beizer 1995].

These three techniques rely only on some notion of the input space and
expected functionality of the component being tested. With COTS components,
the user should know these facts and be able to create test cases around them.

Black box testing is not strictly required to operate without access to the source
code. Techniques such as control flow analysis and data flow analysis are black
box techniques that require the access to requirements documents and source
code [Beizer 1995]. They require that the internal behavior of the object be
studied for correctness, making these techniques all but impossible to apply to
COTS components.

To guide test case selection, the operational profile of the COTS component can
be used. The operational profile identifies the criticality of components and their
duration and frequency of use [Schneidewind 1998]. Both the operational profile
of the COTS component and the whole system must be taken into account.

Table 6. Black Box Testing Techniques.

Technique Description

Equivalence classes

Mark the input space into similar classes to
allow on representative input to test for the
entire class

Error guessing

Based on experience, test possible or
common errors that are possible.

Random tests

Pick randomly from the input space for the
test cases.

Operational profile testing

Choose test cases based on the expected
operational environment for the product.

30

COTS: A Survey Data & Analysis Center for Software

4.3.5 COTS Unit Testing Techniques

Unit testing techniques to gauge the functionality of a COTS component is not
very different than judging the functionality of a non-COTS component. The user
can, in both cases, define the input and output space and the correct mapping
the component should provide. The COTS component can then be tested using
the above mentioned techniques to ensure that the necessary functionality is
present.

Testing a component for internal and external security and the handling of
anomalous inputs is quite different between COTS and non-COTS components.
The testing would be easier with access to the source code. Various inspection
techniques are available to test for these items. Without the source code, as in
the COTS case, the only recourse is to exercise the COTS product to the user’s
satisfaction that it is safe.

A proactive method to ensure the COTS product is to test the COTS product in
isolation by feeding it inputs and watching the outputs produced. Of particular
importance here is whether the correct outputs are produced, what happens
when anomalous input is provided or malicious input is provided. [McGraw]
describes a method to randomly generate intelligent (i.e., possible) data to feed
to the COTS product during testing. They applied this to several Windows NT
applications to determine their robustness. Their goal is to ensure that faulty
input does not cause the COTS product to fail and to ensure that the output of
the COTS product (if it does not fail) does not cause the rest of the system to fail.

Ballista is an automated tool that is used to test object interfaces for robustness
[Kropp 1998]. It focuses on the "invalid inputs"” referred to in the robustness
definition. Ballista is designed to produce invalid inputs and watch the
component for crashes or hangs as a result. A weakness here is that only
crashes or hangs are considered failures. This methodology does not ensure
that the outputs produced by the component are correct or that the functionality
specified by the COTS vendor actually exits.

[Ghosh 1998] describes another method to stress test the COTS product with
intelligent (syntactically correct) but unexpected input. In this case the input is
guaranteed to be syntactically correct, i.e. of the correct data types, correct
format of input strings, etc. This may not always be the case; corrupt data with
unimaginable errors may be passed to the COTS product. They suggest that a
wrapper is placed around the COTS product to filter the input to disallow explicitly
incorrect inputs. Their method is also more robust in what types of errors it looks
for from the COTS product. They check to see if any incorrect exit codes are
raised, unhandled exceptions are thrown, the process hangs, insecure behavior
(i.e., suspicious memory/disk access) or system crashes. Many other methods

31

COTS: A Survey Data & Analysis Center for Software

only focus on a hung process or system crashes, assuming the rest of the
system will handle the error codes or exceptions. Their paper provides a case
study of this method and note that currently work is being continued to extend the
tool to handle COM/OLE/DCOM objects.

[Ghosh 1999] describes a method to test the robustness of a COTS product in
the face of the failure of an Operating System call. They describe a tool that
simulates the failure of various OS calls in a number of different ways. Some
may count these call failures as an input failure, but no other paper explicitly
mentions failures to OS calls or other function calls. One could conceive of
extending this tool to handle simulating a failure in an arbitrary function call.

Unit testing needs to be able to ensure that no malicious code is hiding in the
COTS product. Without the source code it is difficult to ensure test coverage of a
component. However, [Kohl] suggests identifying dormant code in a COTS
product to begin to determine if it include extra functionality or malicious code.

In a process oriented approach, Voas proposes a method to allow the vendor to
attach a quality rating to a product, "Test Quality Rating." [Voas 1999] He
proposes that an independent certification organization be allowed to do white-
box testing on the component to determine how the product functioned and also
how good the tests are expected to be at finding defects. Voas proposes using
the Squeeze Play method to determine what types of test cases need to be run
to ensure that the number of defects that has not been tested for is small [Voas
1999]. This method has at least one weakness; the vendor has to be willing to
submit the product to independent testing. If the vendor will not allow the
independent body to look at the source code of the product this is no better than
any other black-box testing scheme. This is also not a proactive scheme from
the point of view of the consumer of the COTS product. They could request or
require the COTS vendor to provide this "Test Quality Rating" but if the industry
refuses to comply, there is nothing the consumer can do.

Voas also stresses the need for testing the COTS product, not just looking at the
software process. His metaphor is that a clean pipe (a quality software
development/test process) can still produce dirty water (poor quality COTS
software). [Voas 1999] He stresses that independent certification is necessary,
many of the same arguments for IV&V of software products apply here. He
notes that ISO or CMM (Capability Maturity Model) certification is not enough to
ensure the COTS product is of high quality and meets the needs of the user.

Hissam details an interesting case study of defect finding in a COTS based
system. The COTS components used in this project were loosely coupled and
their functionality well specified. This may not always be the case with COTS
components, but it does serve as good anecdotal evidence that is its possible to
use black box testing to identify bugs within a COTS component. As the source
code was not available for the COTS components the defect was defined in

32

COTS: A Survey

Data & Analysis Center for Software

terms of high level functionality but in specific enough terms that the vendor was

able to provide a patch.

Table 7. COTS Unit Testing Techniques.

Technique

Goal

Randomly generated intelligent input, valid
and invalid input

Ensure robustness of COTS product to
handle invalid input

Randomly generated intelligent input,
syntactically correct, valid and invalid data
values

Ensure robustness of COTS product to
handle invalid input that is syntactically
correct

Simulate Operating System call failures

Ensure robustness of COTS product to
handle Operating System failures

Test Quality Rating

Allow the vendor to have an independent
certification organization brand its product
with a rating of quality

Identify dormant code

Ensure that no malicious code is packaged
in the COTS product by ensuring that all the

code has been executed/tested.

4.3.6 Integration Testing

Integration testing is done to ensure that component interfaces work together
properly when the system is assembled [Hetzel 1984]. Functionality is not as
important to test at this point as is interoperability of the components. Ideally unit
testing has already assured the user that the functionality of the COTS
component is consistent with the user's need. Several techniques can be used
to achieve integration testing. The major difference in the techniques has to do
with which components are integrated at what point in time. The common point
is that components (or modules) are usually integrated one at a time, allowing
the assumption that the last integrated component is responsible for any new
failure. Bottom up integration testing takes components that have completed unit
testing and integrates them together with other small modules. The main
weakness of this technique is no preliminary version of the software product is
available until the final module (the highest level module) is added to the system
[DeMillo 1987]. Top down testing starts with the high level driver or top level
modules and integrates increasingly lower level models until the smallest
modules have been integrated. This method requires a good deal of stub or
scaffolding code to be created to allow higher level modules to be run without the
lower level modules being in place [DeMillo 1987]. Other combinations such as
the most critical modules or a group of modules that perform some higher level
functionality can be used to structure the integration testing [Hetzel 1984].

33

COTS: A Survey Data & Analysis Center for Software

4.3.7 COTS Integration Testing

The goal of integration testing with COTS products is the same as with any
software development process, the subsystems need to be tested to ensure that
they work together correctly. In this case, the COTS products make this a bit
more difficult for all the same reasons that unit testing of COTS products is
difficult. Lack of source code and lack of clear understanding of its
development/quality process make system testing a challenge. The unit testing
should have found errors caused by the COTS product receiving erroneous
input. The system testing needs to focus on how the system reacts to the output
from the COTS product and general behavior of the COTS product. Itis
important to realize that integration testing does not ensure that the COTS
product performs correctly but rather that the entire system works correctly with
the addition of the COTS product. The COTS product may still fail or produce
bad output, integration testing is done to ensure this does not cause the entire
system to fail.

Voas describes a method, Interface Propagation Analysis, that predicts what
impact a COTS product will have on system stability/performance [Voas 1998].
The most important object of study here is what happens if the COTS product
fails. Voas suggests simulating the failure of a COTS product by isolating the
COTS output and replacing it with erroneous output (random data or known bad
outputs). If bad outputs from COTS are shown to cause system failures, the user
needs to be able to show that these outputs are not possible from the COTS
product. Voas mentions Static Fault tree analysis and Backward Static Slicing to
do this. Unfortunately, both these methods require access to the COTS
component source code, which is assumed to be unavailable. His solution to this
is to wrap the COTS product in a software wrapper that filters its inputs and
outputs to ensure that only good input goes to the COTS product and only good
outputs are passed on to the rest of the system.

Bad output is not the only object of study. The user needs to ensure that
correct/good output from the COTS product does not cause problems in the
system. Does the COTS product have side effects? Does it corrupt other pieces
of memory as it operates? These issues should be resolved during integration
testing. This is also a bit involved with ensuring the custom software behaves as
expected, i.e., does it really accept the inputs the COTS component was required
to produce?

[Voas Charron] provides an assessment technique to determine the failure
tolerance of interfaces between objects. This is a similar idea to [Voas] but
focuses on how far the erroneous output propagates and whether it causes a
system failure. This method as well as [Voas] does not guarantee that the COTS
component will not fail or that it will produce correct output. It merely ensures
that the entire system will not fail on the failure of a COTS product.

34

COTS: A Survey

Data & Analysis Center for Software

Assessing COTS products’ reliability, maintainability, and availability (RMA) is

considered in [Schneidewind 98].

The idea is that the decision to employ COTS on mission critical systems should
not be based on development cost alone. Rather, costs should be evaluated on a
total life cycle basis and RMA should be evaluated in a system context (i.e.,
COTS components embedded in a larger system).

Table 8. COTS Integration Testing Techniques.

Technique

Goal

Interface Propagation Analysis

Predict what impact a COTS product will
have on a system's stability

Error Propagation

Determine how far bad input data will
propagate through the component interfaces

Side Effects Check

Check that correct performance of the COTS
component does not have side effect
detrimental to the system

4.4 COTS and Highly Reliable Systems

The issues related to assuring the reliability of COTS-based systems were
treated in section 4.3. Here we deal with techniques proposed to build highly
reliable systems using COTS, and specifically with the Simplex approach [Sha

1998].

Some characteristics of COTS, such as the unavailability of source code and the
possibility of inspecting and testing them white box, and the lack of control on
processes used to build them, make COTS a sub-optimal choice for highly

reliable systems.

It often is possible to obtain the source code of a COTS software component by
paying a large sum of money to the vendor. With the source code, the customer
can then subject the COTS to a high-assurance inspection and testing process
and make any modifications that are needed. But once a COTS has been
modified, it is no longer COTS software, the vendor is no longer in charge of
maintenance, future releases could be not compatible, most if not all of the

benefits of the COTS approach are lost.

The Simplex approach [Sha 1998] proposes a software fault-tolerant architecture

to use COTS in highly reliable systems.

[Sha 1988] discusses reliability techniques such as replication, majority voting,

and N-version programming.

Replication and majority voting were developed to deal with random hardware
faults. However, they are ineffective against software faults.

35

COTS: A Survey Data & Analysis Center for Software

N-version programming is an approach that is intended to randomize software
errors and thus make majority voting work for software faults. Different
programmers build different versions of the same software (or critical parts of a
software system) with the idea that different designers and implementers will
produce different errors. Therefore, when one system fails under a given set of
circumstances, the other probably will not fail.

An adaptation of N-version programming for COTS is to use different vendors'
COTS components with the same interface. For example, in the Boeing 777,
three different vendors' Ada run-times and compilers are used [Yeh 1996].
However, some studies have indicated that some errors will still be shared
among the independently developed systems [Knight 1986].

[Sha 1998] proposes to use the principle of analytic redundancy. Using analytic
redundancy, a system is partitioned into a high-assurance portion and a high-
performance portion. The high-assurance application kernel is designed to
ensure simplicity and reliability, uses high assurance processes and excludes the
use of COTS. On the other hand, COTS components can be used extensively in
the high-performance subsystem. This model is applied in the Boeing 777: a
high-assurance backup software controller implements the highly assured and
simpler 747 control laws, whereas a high-performance 777 software controller
serves as the normal digital controller [Yeh 1996].

The kernel monitors the system state. If unsafe, the kernel dynamically takes
over. When a safe condition is in place again, the kernel switches back control to
the high-performance subsystem.

This approach works well for systems that have states that can be monitored,
such as feedback control and command-and-control applications.

Under the Simplex architecture, each major system function is implemented as
an analytically redundant module consisting of a high-assurance application
kernel and a high-performance subsystem, the components of which can be
swapped in real time.

4.5 Project Management and Cost Estimation

Project management is probably the most impacted of horizontal activities (i.e.
activities performed throughout the process). Project estimation and tracking both
have to consider new activities. Estimating their duration is currently a complex
task, due to the limited experience and estimation models existing. Project
tracking is easier to accomplish, as it only requires modifications to the effort
accounting procedures.

COCOTS (COnstructive COTS) [USC2000, Abst 2000], focuses on estimating
the cost, effort, and schedule associated with using COTS in a software
development project. Though still experimental, COCOTS is a model

36

COTS: A Survey Data & Analysis Center for Software

complementary to COCOMO Il [USC 1997], capturing costs that traditionally
have been outside the scope of COCOMO. ldeally, once fully formulated and
validated, COCOTS will be used in concert with COCOMO to provide a complete
software development cost estimation solution.

COCOTS considers four activities: assessment of candidate COTS, tailoring of
COTS, development and testing of glueware, and increased system
programming and testing. It is assumed that COCOMO models cover the
traditional development, based on development and reuse of source code.
Currently [Abst 2000] the COCOTS database contains data from 20 projects, too
limited a data set to draw final conclusions.

37

COTS: A Survey Data & Analysis Center for Software

38

CcO
TS
spe
cific
activ
ties

COTS: A Survey Data & Analysis Center for Software

5 A Suggested COTS Process

We present here (see Figure 3) the new proposed process for COTS-based
projects developed by the SEL. The process is targeted to COTS-based projects
using several peer COTS or one COTS integrated with a considerable amount of
new developed software. In other words we exclude the case of adaptation of a
single COTS (a turnkey system). The process covers only development. We
discuss phases, activities and roles/responsibilities. We will concentrate on the
differences and enhancements as compared with the current processes.

The main phases (dashed ovals) are: Requirements, Design, Coding and
Integration. Most phases encompass activities specific to COTS-based
development. These activities are drawn above the horizontal line in Figure 3.
This line graphically separates the two tracks existing in COTS-based projects,
traditional activities and COTS-specific activities.

Vendor

Identification

Rgdijiremenl'é'v.ﬂ

nigiiaiion-.,

f Package Identify

Glueware

Evaluation/
Selection

Glueware and
i Integration

and
Interfaces

Target

7 Integration

System

Requirements

and
Test

Requirements
Review

Test

Non-COT:
Coding

Design
Review

Design
Analysis

Customer

Process phase

D Process check or review

Information flow - bidirectional

Process activity External role

Figure 3. The New Proposed COTS Process.

5.1 Requirements

Previously, COTS selection was performed at the beginning of the Design phase.
Now, based on findings from interviews with projects and on actual processes,
requirements analysis and COTS selection are performed together. Further, new

39

Installationand |
Acceptance

COTS: A Survey Data & Analysis Center for Software

activities are added and key decisions stressed. We list them in a logical order,
while in practice many of them will be concurrent or iterated several times.

Make Vs. Buy Decision I. Using or not using COTS in a project is a key
decision, which impacts all subsequent phases, and the success of the product.
The decision should consider technical and non-technical issues.

COTS selection has thus far been treated more as a managerial than a technical
decision. Instead, technical staff should be empowered to make decisions
regarding COTS, as opposed to management dictates that a specific COTS shall
be used. For many projects, COTS choices are made outside the team, thus
ignoring the team’s expertise and experience. Requirements also often came
from outside the team, and conflicts between requirements and COTS
functionality often occur later in the project.

For these reasons the make vs. buy decision should be recognized, formalized
and justified. At this point, a first make vs. buy decision can be taken, considering
only non-technical issues, the flexibility in requirements and the willingness to
depend on the vendor. If either of these prerequisites is not satisfied, the project
should not use COTS.

Requirements Definition. Requirements for the project are sketched out in little
detail. The goal is to guide the identification of COTS. When the domain of an
application is stable and well known, this activity could be skipped, as the
requirements and the COTS available are pretty familiar.

COTS lIdentification and Selection. COTS are identified and evaluated using
vendor documentation, reviews, peer experiences and suggestions. The goal of
this activity is to reduce the number of candidates to two or three to be deeply
evaluated. Clearly, the number of deep evaluations must be kept low for cost and
schedule reasons.

COTS Familiarization. The COTS selected above are actually used. The
projects interviewed considered this activity essential to better understand the
functionalities available (not just the ones claimed), their quality, and architectural
assumptions.

Feasibility Study. In this activity a product is described at a level of detail
sufficient to take the second make vs. buy decision (see below). The description
should consist of a complete requirement definition, a high level architecture, an
effort estimation, and a risk assessment model. The high level architecture allows
the team to sketch dependencies among COTS and incompatibilities [Yakimovic
1999]. Incompatibilities, vendor dependability, COTS dependability and other
factors are an input for the risk model.

The feasibility study should be repeated for a product without COTS (the make
solution), and one (or more) products with a COTS. As an example, let's assume
that three variants of the product are studied, without COTS, with COTS A, and
with COTS B. In real cases more or fewer variants could be studied. Using
different combinations of COTS could be analyzed in the same way.

40

COTS: A Survey Data & Analysis Center for Software

Make Vs. Buy Decision Il. At this point the make vs. buy decision can be
reviewed at a much deeper level of detail. The attributes considered for the
decision are the requirements satisfied by a product variant, the estimated cost,
and the estimated risks. The algorithms used to guide the decision process could
be [Kontio 1996, Morisio 1997]. The result of this decision is the product variant
that will be developed, including requirements and COTS selected. Each variant
represents a different trade-off among requirements satisfied, risks accepted and
cost. This make vs. buy decision analyzes in detail these trade-offs.

The phase ends with a Requirements Review. Reviewing requirements with the
customer is a fundamental step in traditional software engineering. In COTS
projects several decisions (COTS selection, requirements satisfied) are made
early, with limited information available. Therefore the Requirements Review
becomes, if possible, even more important. The review is guided by a checklist
covering the main decisions made in this phase, and the assumptions they are
based on (risk, cost, and requirements).

5.2 Design

Some parts of design (definition of high level architecture, analysis of integration
issues) were anticipated in the Requirements phase. However, these activities
are repeated here at a much lower level of detail, as all effort is concentrated on
fully designing the product variant selected.

Design includes a high level design activity where one of the main concerns is
defining the integration of COTS and newly developed software. This is
particularly demanding when several COTS are involved, each one with,
possibly, different architectural styles and constraints.

The phase ends with the COTS Design Review. This is a typical Design Review
for the traditional part, but covers other aspects too, essentially the decisions
about architecture, COTS integration and glueware. At this point the make vs.
buy decision is reviewed too. More information is available now, essentially about
the COTS selected and about integration issues. Risks, the integration effort and
overall cost are re-estimated and the decision re-assessed. It is possible that at
this stage it becomes clear that integrating the selected COTS is impossible,
requesting a loop back to the Requirements phase.

5.3 Roles

We describe here new roles and responsibilities peculiar to COTS projects. One
role (the COTS Team) is at the organizational level, while the other is at the
project level.

5.3.1 COTS Team

A group or a person, depending on the size of the organization, should
concentrate on the following COTS-related skills and activities. Single projects
cannot afford to build these skills individually. The team acts as a repository of

41

COTS: A Survey Data & Analysis Center for Software

history, knowledge and skills about COTS, and offers them to projects as a
consulting activity.

Evaluation and Selection of COTS. Evaluations done by individual projects
tend to be narrow in scope, concentrating only on those packages with which
the project team members are familiar. Furthermore, unbiased evaluations
require techniques and skills that projects cannot have.

History of COTS Evaluations. These are organized in an easily accessible
catalogue of COTS known to the organization, describing concisely the
function provided, vendor, cost, location, and projects using it. The real
difficulty of this task is the rapidity of changes in the market place that makes
the catalogue rapidly obsolete.

COTS Usage. A project becomes more readily proficient with a new COTS if
it can access the experience of other projects that used it in the past. The
COTS Team normally does not have this experience, but can act as a contact
point between projects.

Procurement. Procurement of COTS requires administrative, managerial and
commercial support that is missing in technical teams. The COTS Team
defines a repeatable process for vendor interaction. Part of the process is
documentation of interactions with the vendor, an important record for the
project manager.

5.3.2 Interface with Vendor

A project should design a single point of contact with the vendor. The role is
supported by the COTS Team as far as non-technical and procurement skills are
needed. The role records all interactions with the vendor and follows a defined
and documented process. The role is also essential to building a partnership with
the vendor, a key factor for success.

42

COTS: A Survey Data & Analysis Center for Software

6 Technologies and Standards for COTS Integration

This section contains collections of online resources for the following COTS
related technologies: CORBA (Common Object Request Broker Architecture),
DCOM (Distributed Component Object Model), and Java/RMI (Java/Remote
Method Invocation); ActiveX and JavaBeans; Jini; JavaSpaces; Java Message
Service (JMS); Enterprise JavaBeans (EJB); Extensible Markup Language
(XML); DIl COE (Defense Information Infrastructure Common Operating
Environment); Unified Modeling Language (UML); and COnstructive COTS
(COCOTS).

6.1 CORBA, DCOM, and Java/RMI

One architectural style for developing systems from COTS components is
distributed object paradigms/component integration technologies/middleware
remoting technologies. Three of the most popular technologies are CORBA,
DCOM, and RML.*

» CORBA is the Common Object Request Broker Architecture. Itis a
standardized specification developed by the Object Management Group (OMG).
CORBA relies on a protocol called the Internet Inter-ORB Protocol (IIOP).
CORBA is object-oriented middleware for heterogeneous distributed systems. It
is language independent and supports multiple platforms. CORBA has language
mappings to C, C++, Smalltalk, Cobol, Ada, and Java. CORBA provides a set of
common interfaces through which object-oriented software can communicate,
regardless of computer platform.

» DCOM is the Distributed Component Object Model developed by Microsoft.
DCOM supports remoting objects by running on a protocol called the Object
Remote Procedure Call (ORPC). DCOM is language independent and is not
cross-platform compatible.

» Java/RMI is JavaSoft's Java/Remote Method Invocation. Java/RMI relies on a
protocol called the Java Remote Method Protocol (JRMP). It supports Java
implementations and is therefore language dependent. RMI enables the
programmer to create distributed Java technology-based to Java technology-
based applications, in which the methods of remote Java objects can be invoked
from other Java virtual machines, possibly on different hosts.? RMI is JavaSoft's
implementation of a distributed object design. RMI provides a way for client and

! Gopalan Suresh Raj's Web Cornucopia — A Detailed Comparison of CORBA,
DCOM, and Java/RMI. http://www.execpc.com/~gopalan/misc/compare.html

% The Source for Java Technology — java.sun.com — Java Remote Method
Invocation (RMI). http://java.sun.com/products/jdk/rmi/

43

COTS: A Survey Data & Analysis Center for Software

server applications to invoke methods across a distributed network of
clients/servers running the Java Virtual Machine.?

6.1.1 Resources — CORBA

http://www.execpc.com/~gopalan/misc/compare.htmi

A Detailed Comparison of CORBA, DCOM and Java/RMI — In this article, let us
examine the differences between these three models from a programmer's
standpoint and an architectural standpoint. At the end of this article, the reader
will be able to better appreciate the merits and innards of each of the distributed
object paradigms.

http://www.sei.cmu.edu/publications/documents/97.reports/97tr011/title.htm

A Study in the Use of CORBA in Real-Time Settings: Model Problems for the
Manufacturing Domain —Technical report from the SEI (CMU/SEI-97-TR-011),
by Andreas Polze, Daniel Plakosh, and Kurt Wallnau. This report describes the
application of an off-the-shelf ORB to two real-time model problems. Based on
the authors' experiences, they believe that today's ORBs can be used in real-
time settings, with certain caveats as outlined in this report. They also outline the
concept of composite objects, an approach for extending the range of non-real-
time ORBs into a greater variety of real-time settings.

http://stsc.hill.af.mil/crosstalk/1997/feb/corba.asp

An Introduction to CORBA (CrossTalk, February 1997) — The Common Object
Request Broker Architecture (CORBA) is an object-oriented infrastructure for
distributed computing. CORBA enables software interoperability across multiple
programming languages and platforms. CORBA is applicable to legacy
integration, commercial-off-the-shelf integration, and new software development.
This article describes the role and status of CORBA for Department of Defense
(DoD) software development. CrossTalk is a publication of the Software
Technology Support Center (STSC).

http://www.cetus-links.org:80/00_corba.html

Cetus Links: Distributed Objects & Components (CORBA) — This site offers a
variety of resources including demos and examples, central sites, link collections,
tutorials, FAQs, references, standards, general newsgroups, mailing lists,
general articles, special articles, interoperability bibliographies, books,
organizations, projects, conferences/workshops, and products/companies.

® Earthweb — developer.com.
http://developer.earthweb.com/news/techfocus/022398 distl.html

44

COTS: A Survey Data & Analysis Center for Software

http://www.serve.com/mowbray/CDPflyer.html

CORBA Design Patterns — This book is written by Dr. Tom Mowbray (author of
The Essential CORBA) and Raphael Malveau. This site includes CORBA Design
Patterns for C++ using Orbix 2.0. ISBN 0-471-15882-8, An Object Management

Group (OMG) book from John Wiley & Sons.

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/arch2.htm#446864
CORBA Overview — This document provides an overview of COBRA taken from
the 2.0 specification.

http://www.cs.wustl.edu/~schmidt/tutorials-corba.html

CORBA Tutorial — This page has links to electronic versions of tutorials on
CORBA by Douglas C. Schmidt, schmidt@cs.wustl.edu, an Assistant Professor
in the Department of Computer Science and the School of Engineering and
Applied Science at Washington University. Introduction to Distributed Object
Programming with CORBA: This tutorial provides an introduction to distributed
object programming using the Common Object Request Broker Architecture.
Implementing Concurrent CORBA Applications with Multi-Threaded Orbix and
ACE: This tutorial illustrates how to use multi-threaded (MT) Orbix and ACE to
implement various types of concurrent CORBA servers including thread-per
request, thread-pool, and thread-per object. Measuring the Performance of
Object-Oriented Components for High-speed Network Programming: This tutorial
describes performance results from benchmarking several network programming
mechanisms (C, ACE C++ wrappers, and two CORBA implementations — Orbix
and ORBeline) over 155 Mbit/sec ATM and 10 Mbps Ethernet networks. An
Overview of CORBA COSS Event Services: This tutorial explains the
architecture of the CORBA Event Service and provides several complete
examples.

http://cgi.omg.org/library/c2indx.html

CORBAV/IIOP 2.1 Specification — The Object Management Group (OMG)
provides electronic versions of the full and complete CORBA/IIOP 2.1
specifications in their formal, edited versions. This corresponds to OMG
Technical Document formal/97-09-01.

http://www.objenv.com/cetus/oo_object_request_brokers.html

Cetus Links: CORBA Object Request Brokers (ORB) — Very comprehensive
collection of links to CORBA-related tools in the following categories: ORBs /
Vendors / Supported languages and features, CORBA Service Implementations,
COM/CORBA Bridges, CORBA-aware CASE Tools, CORBA for Messaging and
Fault Tolerance, Miscellaneous CORBA Products and Tools, and other lists of
CORBA software.

http://www.mitre.org/research/domis/omg/orb.html

45

COTS: A Survey Data & Analysis Center for Software

Common Object Request Broker Architecture (CORBA)
Specifications — This site contains the CORBA specifications.

Comp-Object-CORBA — Send mail to majordomo@omg.org with the following
command in the body of the message: subscribe comp-object-corba.

http://corbaweb.lifl.fr/

CorbaWeb — CorbaWeb is a generic gateway between the Common Object
Request Broker Architecture (CORBA) and the World Wide Web (WWW). This
site provides information on the GOODE Project, CorbaScript language, a list of
publications, demonstrations, and links to related resources.

http://dii-sw.ncr.disa.mil/coe/topics/atd/

Defense Information Systems Agency's (DISA) Advanced

Technologies — Links to briefings on topics in OOT, CORBA, and Java,
including applications to Ada and reengineering.

http://wwwe.itsi.disa.mil/

Defense Information Systems Agency (DISA)/Joint Interoperability and
Engineering Organization (JIEOQ) Center for Standards — This site supports
DISA/JIEQO's mission to orchestrate, as DoD's Executive Agent for centralized
management of information technology standards, the development, adoption,
specification, certification and enforcement of information processing, transfer
and content standards within DoD. This includes influencing the development
and adoption by industry of standards supporting DoD requirements. A
document library is provided which serves as a central on-line source for the
policies, guidance, standards, and other references related to building affordable,
maintainable, and interoperable standards-based information systems for the
DOD.

http://www.sei.cmu.edu/publications/documents/97.reports/97tr004/97tr004chap0
1.htm

Distributed Object Technology with CORBA and Java: Key Concepts and
Implications —The purpose of this Software Engineering Institute (SEI) report is
to analyze the potential impact of distributed object technology (DOT) on
software engineering practice. The analysis culminates with the conclusion that
the technology will have a significant influence on both the design and
reengineering of information systems and the processes used to build them. The
authors see a profound impact and fundamental change in both technical
thinking and practice as a result of the related technologies they group together
as DOT.

http://www.flashline.com/

46

COTS: A Survey Data & Analysis Center for Software

Flashline.com -- The Software Component Marketplace This marketplace is
available to research, buy, and sell Java, COM, and CORBA software
components. JavaBeans, Enterprise JavaBeans (EJB), and custom components
are also available.

JavaCORBA Mailing List — This is a place to discuss various issues of using
Java and CORBA together. To subscribe, send a mail to listserv@Iuke.org with
SUBSCRIBE or SUBSCRIBE DIGEST in the Subject field.

http://www.javacoffeebreak.com/articles/rmi_corba/

Java RMI & CORBA: A Comparison of Two Competing Technologies — With the
introduction of CORBA support to Java (as of version 1.2), developers now face
the question of whether to continue to use remote method invocation (RMI), or
make a move to CORBA. This article discusses the pros and cons, and
evaluates the potential of these two technologies.

http://cgi.omg.org/corba/beginners.htmi

OMG's CORBA for Beginners — The Object Management Group (OMG)
provides the resources at this site. Here you will find a variety of information
about CORBA including: overviews and tutorials; books and magazine articles;
CORBA mailing lists; CORBA demos and programming examples, links to other
CORBA-related sites, and a CORBA FAQ.

http://www.omg.org/

Object Management Group (OMG) — OMG is a non-profit consortium dedicated
to promoting the theory and practice of object technology (OT) for the
development of distributed computing systems. OMG was formed to help reduce
the complexity, lower the costs, and hasten the introduction of new software
applications. Their goal is to provide a common architectural framework for
object-oriented applications based on widely available interface specifications.
Their international membership currently stands at over 600 software vendors,
software developers and end users.

http://www.serve.com/mowbray/essential.html

The Essential CORBA Systems Integration Using Distributed

Objects —This book was written by Dr. Thomas J. Mowbray (author of CORBA
Design Patterns) and Ron Zahavi.

ISBN 0-471-10611-9, published by John Wiley & Sons.

http://www.webadvisor.com/corba.html

Web Advisor: CORBA — CORBA, or Common Object Request Broker
Architecture, is a set of specifications defining the ways software objects should
work together in a distributed environment. The organization which drives the
specifications, OMG, or Object Management Group, has over hundreds of
members representing a major portion of the software industry. The members
work together to propose, review, and finally adopt the set of specifications to

47

COTS: A Survey Data & Analysis Center for Software

allow software objects to be developed independently and yet work together in a
harmonic fashion. The fundamental piece of CORBA is the ORB, or Object
Request Broker. The ORB can be viewed like a bus carrying the 'objects’
between the clients, those that consume the objects, and the servers, those that
produce the objects. The consumers are provided with 'object interfaces' defined
using a language called the Interface Definition Language. The detail
implementation of the objects by the producers is totally shielded from the
consumers. The promise of the inter-working of software objects from different
vendors through CORBA has induced major players in the industry to
aggressively endorse OMG's drive to forge ahead its agenda. This page contains
a list of Useful Links.

6.1.2 Resources — DCOM

http://www.execpc.com/~gopalan/misc/compare.htmi

A Detailed Comparison of CORBA, DCOM and Java/RMI — In this article, let us
examine the differences between these three models from a programmer's
standpoint and an architectural standpoint. At the end of this article, the reader
will be able to better appreciate the merits and innards of each of the distributed
object paradigms.

http://www.cetus-links.org/oo_ole.html

Cetus Links -- Distributed Objects & Components: COM/DCOM — This
information rich source provides related sites, link collections, tutorials, FAQs,
glossaries, newsgroups, books, magazines, organizations,
conferences/workshops, and utilities/tools.

http://msdn.microsoft.com/library/backgrnd/html/msdn_dcomarch.htm

DCOM Architecture by Markus Horstmann and Mary Kirtland — This article
focuses on the inner workings of DCOM. It targets the application developer who
wishes to create "state of the art" applications, which scale equally well on the
intranet, on the Internet, and beyond.

http://www3.sagasoftware.com/cgi-
bin/framer.exe?type=full&addr=http://www3.sagasoftware.com/site/solution/som/
entirex/dcom_gl.htm

DCOM Glossary — This site offers short definitions of terms used when working
with DCOM.

http://www.dalmatian.com/dcom.htm

DCOM Overview — The Distributed Component Object Model (DCOM) is a
protocol that enables software components to communicate directly over a
network in a reliable, secure, and efficient manner.

http://msdn.microsoft.com/library/backgrnd/html/msdn_dcomtec.htm

48

COTS: A Survey Data & Analysis Center for Software

DCOM Technical Overview — Microsoft® Distributed COM (DCOM) extends the
Component Object Model (COM) to support communication among objects on
different computers — on a LAN, a WAN, or even the Internet. This white paper
provides a high-level overview of how you can use DCOM to solve the hardest
problems associated with distributed applications.

http://www1.bell-labs.com/user/emerald/dcom_corba/Paper.html

DCOM and CORBA Side by Side, Step by Step, and Layer by Layer — DCOM
(Distributed Component Object Model) and CORBA (Common Object Request
Broker Architecture) are two popular distributed object models. In this paper, the
authors make architectural comparison of DCOM and CORBA at three different
layers: basic programming architecture, remoting architecture, and the wire
protocol architecture. A step-by-step description of remote object activation and
method invocation is provided to demonstrate the similarities and differences of
the two frameworks. A primary goal is for people who are already familiar with
one model to quickly understand the basic architecture of the other.

http://www.ttginc.com/dcomarticle.htm

DCOM — A Technical and Business Overview — The Distributed Component
Object Model protocol is an application-level protocol for object-oriented remote
procedure calls useful for distributed, component-based systems of all types.

http://www.microsoft.com/com/tech/DCOM.asp

Microsoft COM Technologies — This site contains articles in the press, white
papers, case studies, useful downloads, samples, specifications, books, and
links to related sites.

http://www.sei.cmu.edu/str/descriptions/com.html

Software Technology Review — Component Object Model (COM), DCOM, and
Related Capabilities — Distributed COM (DCOM) is an extension to COM that
allows network-based component interaction. While COM processes can run on
the same machine but in different address spaces, the DCOM extension allows
processes to be spread across a network. With DCOM, components operating on
a variety of platforms can interact, as long as DCOM is available within the
environment.

http://www.microsoft.com/ntserver/zipdocs/dcom_architecture.exe
Understanding the Distributed Object Component Model (DCOM) Architecture —
DCOM extends the Component Object Model (COM) to support communication
among objects on different computers -- whether on a local area network (LAN),
a wide area network (WAN), or the Internet.

49

COTS: A Survey Data & Analysis Center for Software

6.1.3 Books — DCOM

http://www.smartbooks.com/bw712comdcom.htm
COM and DCOM: Microsoft's Vision for Distributed Objects — by Roger
Sessions; December 1997; Wiley Computer Publishing; ISBN: 0-471-19381-X

http://www.amazon.com/exec/obidos/ASIN/0672313529/qid=963855390/sr=1-
5/002-4377486-0324804

COM/DCOM Unleashed — by Randy Abernethy, Jesus Chahin, Randy Charles
Morin; April 1999; MacMillan Publishing Company; ISBN: 0672313529

http://www.amazon.com/exec/obidos/ASIN/1555582168/qid=963855390/sr=1-
2/002-4377486-0324804

DCOM Explained — by Rosemary Rock-Evans August 1998; Digital Press;
ISBN: 1555582168

http://www.amazon.com/exec/obidos/ASIN/157231849X/qid=963855390/sr=1-
4/002-4377486-0324804

Inside Distributed COM — by Guy Eddon, Henry Eddon April 1998; Microsoft
Press; ISBN: 157231849X

http://www.amazon.com/exec/obidos/ASIN/1565925815/qid=963855390/sr=1-
1/002-4377486-0324804

Learning DCOM — by Thuuan L. Thai, Andy Oram (Editor) April 1999; O'Reilly &
Associates; ISBN: 1565925815

http://www.amazon.com/exec/obidos/ASIN/186100060X/qid=963855390/sr=1-
6/002-4377486-0324804

Professional DCOM Programming — by Richard Grimes June 1997; Wrox Press
Inc.; ISBN: 186100060X

6.1.4 Resources — Java/RMI

http://www.amazon.com/exec/obidos/ASIN/0764580434/qid%3D963843914/002-
4377486-0324804

Java™ RMI: Remote Method Invocation — by Troy Bryan Downing February 2,
1998; IDG Books Worldwide; ISBN: 0764580434

http://www.execpc.com/~gopalan/misc/compare.htmi

A Detailed Comparison of CORBA, DCOM and Java/RMI — In this article, let us
examine the differences between these three models from a programmer's
standpoint and an architectural standpoint. At the end of this article, the reader
will be able to better appreciate the merits and innards of each of the distributed
object paradigms.

50

COTS: A Survey Data & Analysis Center for Software

http://www.cetus-links.org/oo_java_rmi.html

Cetus Links -- Distributed Objects & Components: Java RMI — This information
rich resource includes examples, demos, FAQ, related sites, bibliographies,
books, and software tools.

http://java.sun.com/products/jdk/1.2/docs/guide/rmi/getstart.doc.html

Getting Started Using RMI: a Tutorial — This tutorial shows you the steps to
follow to create a distributed version of the classic Hello World program using
Java Remote Method Invocation (RMI).

http://www.enteract.com/~manish/howtormi.html

How to Develop a Java Application Using RMI — This tutorial contains a brief
explanation of the process of developing an RMI application in Java. This page is
focused on laying out all of the details, in sequence, concisely, so that readers do
not lose track of them.

http://www.javacoffeebreak.com/articles/rmi_corba/

Java RMI & CORBA: A Comparison of Two Competing Technologies — With the
introduction of CORBA support to Java (as of version 1.2), developers now face
the question of whether to continue to use remote method invocation (RMI), or
make a move to CORBA. This article discusses the pros and cons, and
evaluates the potential of these two technologies.

http://www.javasoft.com/marketing/collateral/javarmi.html

Java Remote Method Invocation: Distributed Computing for Java — This paper
describes the benefits of RMI, and how you can connect it to existing and legacy
systems as well as to components written in Java.

http://java.sun.com/products/jdk/1.2/docs/guide/rmi/spec/rmiTOC.doc.html
Java Remote Method Invocation Specification — The Java RMI specification is
available here.

http://www.ccs.neu.edu/home/kenb/com3337/rmi_tut.html
Northeastern University's RMI Tutorial — This tutorial attempts to show the
essence of RMI, without discussing any extraneous features.

http://java.sun.com/products/jdk/rmi/
Sun's Java Remote Method Invocation (RMI) — This site provides
documentation, the RMI specification, a white paper, and a data sheet.

http://java.sun.com/products/jdk/1.1/docs/guide/rmi/index.html

Sun's Remote Method Invocation (RMI) — This site provides a tutorial,
examples, the RMI Specification, RMI API Reference, RMI tools, and release
notes.

51

COTS: A Survey Data & Analysis Center for Software

6.2 Component Models — ActiveX and JavaBeans

JavaBeans and ActiveX both serve the same basic function: to facilitate
communication among software components within framework "containers."
These containers include Web browsers and other document viewers. Like
JavaBeans, ActiveX serves as a component framework; the two are direct
competitors.*

A loosely defined set of technologies developed by Microsoft, ActiveX is an
outgrowth of two other Microsoft technologies called OLE (Object Linking and
Embedding) and COM (Component Object Model). This set of technologies from
Microsoft provides tools for linking desktop applications to the World Wide Web.
Using a variety of programming tools — including Java, Visual Basic, and C+
allow users to view Word and Excel documents directly in a browser.® ActiveX is
a standard that enables software components to interact with each other in a
networked environment, regardless of the language in which they were created.®

JavaBeans is a portable, platform-independent component model written in the
Java programming language. It enables developers to write reusable
components once and run them anywhere. JavaBeans acts as a bridge between
proprietary component models and provides a seamless means for developers to
build components that run in ActiveX container applications. JavaBeans
components, or Beans, are reusable software components that can be
manipulated visually in a builder tool. Beans can be combined to create
traditional applications, or their smaller web-oriented brethren, applets. In
addition, applets can be designed to work as reusable Beans.’

6.2.1 Resources — ActiveX

http://www.active-x.com/
Active-X.com — This site provides components for downloading.

http://www.microsoft.com/windows/ie/support/docs/tech30/activex.htm
ActiveX Technology and ActiveX Controls — ActiveX is a standard that enables

4 Java World — JavaBeans vs. ActiveX: Strategic Analysis.
http://www.javaworld.com/javaworld/jw-02-1997/jw-02-activex-beans.html

® CNET Glossry.
http://coverage.cnet.com/Resources/Info/Glossary/Terms/activex.html/

® Microsoft Internet Explorer — Technical White Papers.
http://www.microsoft.com/windows/ie/support/docs/tech30/activex.htm

" The Source for Java Technology — java.sun.com; JavaBeans FAQ: General
Questions. http://java.sun.com/beans/fag/fag.general.html#Q1

52

COTS: A Survey Data & Analysis Center for Software

software components to interact with each other in a networked environment,
regardless of the language in which they were created.

http://www.shorrock.u-net.com/axintro.html

ActiveX Unofficial Guide — This guide takes the reader through all aspects of
ActiveX control creation starting with Visual Basic ActiveX creation, progressing
to Java and Visual C++ methods of creation. It contains an introduction to using
Visual Basic Scripting with ActiveX controls, a starter on some of the ActiveX
OLE controls that are built into Windows, a couple of "create your own" ActiveX
Control Examples, the Scripting Model in Internet Explorer/Netscape and a guide
to the best ActiveX sites on the web.

http://browserwatch.internet.com/activex/activex-big.htmi
Browser Watch: ActiveX Arena! — This site provides a collection of
downloadable ActiveX controls.

http://www.javaworld.com/javaworld/jw-02-1997/jw-02-activex-beans.html
JavaBeans vs. ActiveX: Strategic Analysis — In this article the author presents a
technical overview and investigates the philosophies, marketing strategies, and
agendas of JavaSoft and Microsoft, cutting through the hype and fervor to
provide an objective look at their component models.

http://www.weblearningcenter.com/scripting/activex.htm

Web Learning Center: ActiveX — This site contains an open forum where
anyone can submit or answer questions about ActiveX programming or using
ActiveX controls; ActiveX examples; and links to resources for Web scripting and
programming.

http://www.whatis.com/activexc.htm

What is an ActiveX control? — An ActiveX control is a component program
object that can be re-used by many application programs within a computer or
among computers in a network.

6.2.2 Books — ActiveX

http://www.amazon.com/exec/obidos/ASIN/1558515038/qid=964114986/sr=1-
2/002-4377486-0324804

Designing and Using ActiveX Controls — by Tom Armstrong December 30,
1996; IDG Books Worldwide; ISBN: 1558515038

http://www.amazon.com/exec/obidos/ASIN/0079132286/qid=964114986/sr=1-
13/002-4377486-0324804

Active Xpert — by Tom Armstrong, Jim Crespino, Rob Alumbaugh September
1997; Computing McGraw-Hill; ISBN: 0079132286

53

COTS: A Survey Data & Analysis Center for Software

http://www.amazon.com/exec/obidos/ASIN/1576760162/qid=964114986/sr=1-
20/002-4377486-0324804

ActiveX and the Internet — by Forest Lin, Richard Jones April 1998; Scott/Jones;
ISBN: 1576760162

http://www.amazon.com/exec/obidos/ASIN/0764531506/qid=964114986/sr=1-
22/002-4377486-0324804

Discover ActiveX — by Richard Mansfield October 30, 1997; IDG Books
Worldwide; ISBN: 0764531506

http://www.amazon.com/exec/obidos/ASIN/0201485362/qid=964114986/sr=1-
16/002-4377486-0324804

Mr. Bunny's Guide to ActiveX — by Carlton Egremont, III July 1998;
Addison-Wesley Publishing Co.; ISBN: 0201485362

http://www.amazon.com/exec/obidos/ASIN/1572312165/qid=964114986/sr=1-
1/002-4377486-0324804

Understanding ActiveX and OLE — by David Chappell September 1996;
Microsoft Press; ISBN: 1572312165

6.2.3 Resources — JavaBeans

http://www.cetus-links.org/oo_javabeans.html

Cetus Links — Distributed Objects and Components: JavaBeans and Enterprise
JavaBeans — This site offers a wealth of information on JavaBeans and
Enterprise JavaBeans. Topics include examples, demos, central sites, related
sites, tutorials, FAQs, standards, literature, organizations,
conferences/workshops, and development environments.

http://www.flashline.com/

Flashline.com: The Software Component Marketplace — This marketplace is
available to research, buy, and sell Java, COM, and CORBA software
components. JavaBeans, Enterprise JavaBeans (EJB), and custom components
are also available.

http://www.javaworld.com/javaworld/jw-02-1997/jw-02-activex-beans.html
JavaBeans vs. ActiveX: Strategic Analysis — In this article the author presents a
technical overview and investigates the philosophies, marketing strategies, and
agendas of JavaSoft and Microsoft, cutting through the hype and fervor to
provide an objective look at their component models.

http://www.vb-bookmark.com/JavaBeans.html
Java Bookmark: JavaBeans Information Directory — This site offers articles,
class libraries, development tools, FAQ, source code, and tutorials.

54

COTS: A Survey Data & Analysis Center for Software

http://developer.java.sun.com/developer/
Java Developer Connection — This site offers tutorials, technical articles,
technical tips, code samples, and related resources.

http://java.sun.com/products/jdk/1.1/index.html

Java Development Kit (JDK) — The Java Development Kit (JDK) contains the
software and tools that developers need to compile, debug, and run applets and
applications written using the Java programming language. The JDK software
and documentation is free per the license agreement.

http://splash.javasoft.com/beans/software/bdk_download.html

JavaBeans Development Kit (BDK) Download — The BDK is intended to support
the development of JavaBeans components and to act as a standard reference
base for both component developers and tool vendors. The BDK provides a
reference Bean container, the BeanBox and a variety of reusable example
source code for use by both tool and beans developers.
http://www.ibm.com/java/education/jb-guidelines.html

JavaBeans Guidelines — This document presents supplementary guidelines that
enable a user to develop good Beans that are well-behaved in the greatest
number of environments, including the popular IDEs and browsers.

http://www.javasoft.com/beans/index.html

JavaBeans Home Page: Javasoft — This site contains software, documentation,
FAQ, development tools, training and support, and information on marketing
beans.

http://www.javasoft.com/beans/spec.html
JavaBeans Specification — The JavaBeans 1.01 specification describes
JavaBeans as present in JDK 1.1.

http://www.javabeans-zone.com/
JavaBeans Zone — This site contains an FAQ, a collection of articles, an Ask
the Pro service, and access to discussion groups.

http://www.javashareware.com/
JavaShareware.com — This site contains applications, applets, JavaBeans,
development tools, and links to related sites.

http://www.ccs.neu.edu/home/lorenz/JavaBeans/oo_javabeans.html

Links JavaBeans — This rich collection of resources includes links to examples,
demos, related sites, tutorials, FAQ, support, references, standards, newsgroups,
mailing lists, articles, bibliographies, books, magazines, organizations,
conferences, tools, and components.

55

COTS: A Survey Data & Analysis Center for Software

http://java.sun.com/beans/FAQ.html
Sun's Java Beans FAQ — This collection of FAQ answers common questions
and provides help with common problems.

http://java.sun.com/beans/
Sun's JavaBeans Home Page — This site offers software, documentation, FAQ,
development tools, training and support, events, and a marketplace for beans.

http://www.alphaworks.ibm.com/alphabeans
alphaBeans: JavaBeans by IBM — This site makes available a collection of
JavaBean components developed by IBM.

6.2.4 Books — JavaBeans

http://www.amazon.com/exec/obidos/ASIN/1562057162/qid%3D962041588/sr%
3D1-16/002-4377486-0324804

JavaBeans Developer's Reference — by Dan Brookshier, Ramesh Santanam;
March 1997; New Riders Publishing; ISBN: 1562057162

http://www.amazon.com/exec/obidos/ASIN/0782120970/qid%3D962041588/sr%
3D1-14/002-4377486-0324804

Mastering JavaBeans — by Laurence Vanhelsuwe; May 1997; Sybex Inc; ISBN:
0782120970

http://www.amazon.com/exec/obidos/ASIN/1575213168/qid%3D962041588/sr%
3D1-19/002-4377486-0324804

Teach Yourself Javabeans in 21 Days — by Don Doherty; August 1997; Sams;
ISBN: 1575213168

http://www.amazon.com/exec/obidos/ASIN/1852330325/qid%3D962041588/sr%
3D1-29/002-4377486-0324804

Essential JavaBeans Fast — by John Hunt; October 1998; Springer Verlag;
ISBN: 1852330325

http://www.amazon.com/exec/obidos/ASIN/007882477X/qid%3D962041588/sr%
3D1-5/002-4377486-0324804

JavaBeans Programming from the Ground Up — by Joseph O'Neil, Herbert
Schildt (Editor); April 1998; Osborne McGraw-Hill; ISBN: 007882477

http://www.amazon.com/exec/obidos/ASIN/067231424X/qid%3D962041588/sr%
3D1-32/002-4377486-0324804

JavaBeans Unleashed — by Don Doherty, Rick Leinecker; December 22, 1999;
Sams; ISBN: 067231424X

56

COTS: A Survey Data & Analysis Center for Software

http://www.amazon.com/exec/obidos/ASIN/0137903383/qid%3D962041588/sr%
3D1-33/002-4377486-0324804

JavaBeans by Example — by Henri Jubin, Jalapeno Team; January 1998;
Prentice Hall Computer Books; ISBN: 0137903383

http://www.amazon.com/exec/obidos/ASIN/0079137040/qid%3D962041588/sr%
3D1-26/002-4377486-0324804

Programming JavaBeans 1.1 : Hands-On Web Development — by Reaz Hoque,
Tarun Sharma; May 1998; Computing McGraw-Hill; ISBN: 0079137040

http://www.javaworld.com/javaworld/jw-05-1998/jw-05-beans.html
JavaBeans Book Review: JavaWorld — This site presents a book review of
three titles. In addition, links to several other books and related resources are
included on the site.

6.2.5 Educational Materials — JavaBeans

http://developer.java.sun.com/developer/onlineTraining/Beans/JBShortCourse/be
ans.htmi

JavaBeans Short Course: Introduction to JavaBeans — This tutorial covers the
following: the JavaBeans architecture, the Beans Event Model, Introspection to
guery Beans about their contents, Bean component creation, Customization of
Beans, Persistence to store and retrieve Beans, the development of applications
comprised of Bean components, the creation of simple builder application, and
the BDK BeanBox application.

http://www.cse.iitb.ernet.in/stuff/internet/java/javabeans/

JavaBeans Tutorial — This tutorial defines a Bean and Bean concepts,
describes the JavaBeans Development Kit (BDK) contents and the
demonstration Beans, and discusses future Bean directions. It describes the
BeanBox and writing both simple and advanced Beans.

http://java.sun.com/docs/books/tutorial/javabeans/index.htmi

JavaBeans Tutorial by Andy Quinn — This tutorial covers JavaBeans Concepts
and the Beans Development Kit (BDK), Using the BeanBox, Writing a Simple
Bean, Properties, Manipulating Events in the BeanBox , the Beaninfo Interface,
Bean Customization, Bean Persistence, using the BeanContext API, and New
Features.

57

COTS: A Survey Data & Analysis Center for Software

6.3 Jini

A Jini system is a Java technology-centered, distributed system designed for
simplicity, flexibility, and federation. The Jini architecture provides mechanisms
for machines or programs to enter into a federation where each machine or
program offers resources to other members of the federation and uses resources
as needed. The design of the Jini architecture exploits the ability to move Java
programming language code from machine to machine and unifies, under the
notion of a service, everything from the user of a Jini system to the software
available on the machines to the hardware components of the machines
themselves.®

6.3.1 Resources — Jini

http://www.devdaily.com/Dir/Java/Articles_and_Tutorials/Jini/
Developers Daily Jini Tutorials — This site provides a collection of Jini tutorials.

http://www.litefaden.com/sv/jd/
Directory of Jini Resources — This site provides a collection of articles, reviews,
books, tutorials, examples, FAQ, Jini documentation, and related sites.

http://www.jdance.com/jini.shtm
JDance — This site presents a collection of Jini related articles.

http://pandonia.canberra.edu.au/java/jini/tutorial/Jini.xml
Jan Newmarch's Guide to Jini Technologies — This tutorial provides an overview
of Jini, troubleshooting tips, and extensive coverage of related topics.

http://www.javaboutique.internet.com/jini/

Java Boutigue's Jini Watch — This site provides news articles on Jini. In
addition, the site provides access to a discussion group and related Jini
resources.

http://triton.cc.gatech.edu/ubicomp/224

Jini Architecture — This site contains the following specifications: Jini Distributed
Event Specification, Jini Distributed Leasing Specification, Jini Lookup Service
Specification, Jini Lookup Attribute Schema Specification, Jini

Discovery and Join Specification, and Jini Device Architecture Specification.

8 Jini Architecture Specification, Revision 1.0, January 25, 1999, cover

58

COTS: A Survey Data & Analysis Center for Software

http://www.artima.com/jini/index.html

Jini Corner at Artima.com: Resources for Jini Developers — At this site visitors
will find a Jini FAQ, a comprehensive set of links to Jini resources on the web, a
discussion forum, an interface repository, and more for the Jini developer.

http://www.sun.com/jini/specs/
Jini Specifications — The complete set of Jini specifications is available for
download from this site.

http://www-rohan.sdsu.edu/doc/jini/doc/api/overview-summary.html
Jini Technology 1.0 APl Documentation — This site provides an overview of Jini
technology APl documentation.

http://www-rohan.sdsu.edu/doc/jini/

Jini Technology Index — This site provides release notes and specifications for
the Jini Technology Core Platform (JCP), Jini Technology Extended Platform
(IXP), Jini Software Kit (JSK), and JavaSpaces Technology Kit (JSTK) Eval.

http://developer.java.sun.com/developer/products/jini/

Jini Technology Web Site — The purpose of this site is to provide visitors with a
central location for accessing and downloading Jini technology infrastructure
software from Sun Microsystems, including the Jini Technology Starter Kit,

Jini specifications, and the Jini Technology Core Platform Compatibility Kit
(TCK).

http://triton.cc.gatech.edu/ubicomp/429
Jini Tutorial from Georgia Tech — This tutorial provides an introduction to Jini,
five key concepts to understanding Jini, and examples and resources.

http://www.eli.sdsu.edu/courses/spring99/cs696/notes/index.html

Lecture Notes: Emerging Technologies: Java Distributed Computing — This
page contains links to lecture notes for the

CS 696 Emerging Technologies: Java Distributed Computing course.

http://www.enete.com/download/#_nuggets
Noel Enete's Nuggets — This site provides example Jini code.

http://www.sun.com/jini/community/

Sun Jini Community — A key concept behind Jini™ connection technology (Jini
technology) is the community. This site provides the Sun community program
overview, the Jini technology licensee community, a downloadable copy of the
Jini Technology Starter Kit, white papers and other documentation, a demo,
specifications, books, and other related resources.

59

COTS: A Survey Data & Analysis Center for Software

http://developer.java.sun.com/developer/products/jini/product.offerings.html

Sun Microsystems Jini System Software 1.0 Product Offerings — There are
three Jini System Software product offerings: the Jini System Software Starter Kit
(Jini Starter Kit), the Jini Technology Core Platform Compatibility Kit (TCK), and
the JavaSpaces Technology Kit (JSTK). This site provides both software and
documentation downloads.

http://www.sun.com/jini/subscribe.html

Sun's Jini Mailing List — Get the latest Jini™ technology-related news by
subscribing to the Jini technology mailing list. Subscribers will receive
announcements that include the following: software specifications, downloadable
software, developer support programs, and other relevant information.

http://www.sun.com/jini/overview/index.html
Sun's Jini Overview — This site provides an introduction to Jini technology,
FAQs, and demonstrations.

http://wwwjini.org/

The Jini Community — This web site is a focal point for the growing community
that is exploring, developing, and evolving Jini connection technology. Itis a
place to share not just ideas, but related source code, documentation and other
development work based on Jini technology. The site facilitates collaborative
development by providing discussion forums, newsgroups, chats, mailing lists,
and anything else that brings the community together.

http://java.sun.com/docs/books/jini/
The Jini Technology Series — This site provides descriptions of Jini books. In
addition, it contains example code, errata, and information on forthcoming books.

http://webopedia.internet.com/TERM/J/Jini.html

Webopedia's Definition of Jini — Software from Sun Microsystems that seeks to
simplify the connection and sharing of devices, such as printers and disk drives,
on a network.

6.3.2 Books — Jini

http://www.amazon.com/exec/obidos/ASIN/013014469X/0/qid%3D961431788/sr
%3D2-1/002-4377486-0324804

Core Jini — by W. Keith Edwards; June 25, 1999; Prentice Hall; ISBN:
013014469X

http://www.amazon.com/exec/obidos/ASIN/0130863866/qid%3D961431788/sr%
3D1-2/002-4377486-0324804

Core Jini -- The Complete Video Course — by W. Keith Edwards; January 2000;
Prentice Hall; ISBN: 0130863866

60

COTS: A Survey Data & Analysis Center for Software

http://www.amazon.com/exec/obidos/ASIN/1565927591/0/qid%3D961431788/sr
%3D2-2/002-4377486-0324804

Jini in a Nutshell: A Desktop Quick Reference — by Scott Oaks, Henry Wong;
March 2000; O'Reilly & Associates; ISBN: 1565927591

http://www.amazon.com/exec/obidos/ASIN/0764545914/qid%3D961431788/sr%
3D1-11/002-4377486-0324804

Jini, a Primer — by Jamie Jaworski, et. al. August 2000; IDG Books Worldwide;
ISBN: 0764545914

http://www.amazon.com/exec/obidos/ASIN/1861002777/qid%3D960497042/sr%
3D1-4/002-4377486-0324804

Professional Java Server Programming: with Servlets, Java Server Pages (JSP),
XML, Enterprise JavaBeans (EJB), JNDI, CORBA, Jini and JavaSpaces — by
Andrew Patzer, et. al. August 1999; Wrox Press Inc; ISBN: 1861002777

http://www.amazon.com/exec/obidos/ASIN/1861003552/qid%3D961431788/sr%
3D1-12/002-4377486-0324804

Professional Jini & JavaSpaces Programming — by Sing Li, Alvin Chin; June
2000; Wrox Press Inc; ISBN: 1861003552

http://www.amazon.com/exec/obidos/ASIN/0201616343/0/qid%3D961431788/sr
%3D2-3/002-4377486-0324804

The Jini Specification (The Jini Technology Series) — by Ken Arnold, et. al. June
1999; Addison-Wesley Publishing Co.; ISBN: 0201616343

http://www.aw.com/cseng/javaseries/index.shtml#jini

Addison-Wesley Jini Technology Series — From the creators of the technology
at Sun Microsystems comes the official series for reference material and
programming guides on Jini technology. Written by those who design, implement,
and document the technology, these books show you how to use, deploy, and
create applications using the Jini technology.

http://www.artima.com/jini/booklist.html
Artima's List of Recommended Books about Jini and JavaSpaces — This site
provides a comprehensive list of books about Jini and JavaSpaces.

6.3.3 Frequently Asked Questions (FAQ) — Jini

http://www.sun.com/jini/fags/index.html

Sun's Jini Technology Frequently Asked Questions (FAQ) — This site provides a
general overview of Jini, details about Jini technology, information on developing
with Jini technology, and Jini and Java technologies.

61

COTS: A Survey Data & Analysis Center for Software

http://www.sun.com/jini/faqgs/
Jini Technology Frequently Asked Questions — This is Sun Microsystems's FAQ
site for Jini.

62

COTS: A Survey Data & Analysis Center for Software

6.4 JavaSpaces

The JavaSpaces technology package provides a distributed persistence and
object exchange mechanism for code written in the Java programming language.
Objects are written in entries that provide a typed grouping of relevant files.
Clients can perform simple operations on a JavaSpaces server to write hew
entries, lookup existing entries, and remove entries from the space. Using these
tools, you can write systems to store state, and also write systems that use flow
of data to implement distributed algorithms and let the JavaSpaces system
implement distributed persistence for you.’

JavaSpaces technology is a simple unified mechanism for dynamic
communication, coordination, and sharing of objects between Java technology-
based network resources like clients and servers. In a distributed application,
JavaSpaces technology acts as a virtual space between providers and
requesters of network resources or objects. This allows participants in a
distributed solution to exchange tasks, requests and information in the form of
Java technology-based objects. JavaSpaces technology provides developers
with the ability to create and store objects with persistence, which allows for
process integrity.™°

This technology provides a cooperative marketplace for posting and retrieving
groups of related objects across a network. "Buyers" and "Sellers" dynamically
post their requests and/or services to a space and receive a response from
interested parties.™

6.4.1 Resources — JavaSpaces

http://www-rohan.sdsu.edu/doc/jini/

Jini Technology Index — This site provides release notes and specifications for
the Jini Technology Core Platform (JCP), Jini Technology Extended Platform
(IXP), Jini Software Kit (JSK), and JavaSpaces Technology Kit (JSTK) Eval.

http://developer.java.sun.com/developer/products/jini/product.offerings.html

Sun Microsystems Jini System Software 1.0 Product Offerings — There are
three Jini System Software product offerings: the Jini System Software Starter Kit
(Jini Starter Kit), the Jini Technology Core Platform Compatibility Kit (TCK), and

® JavaSpaces Specification

19 The Source for Java Technology — java.sun.com; JavaSpaces Technology.
http://java.sun.com/products/javaspaces /

1 Java & Internet Glossary. http://mindprod.com/jglossj.html

63

COTS: A Survey Data & Analysis Center for Software

the JavaSpaces Technology Kit (JSTK). This site provides both software and
documentation downloads.

http://java.sun.com/products/javaspaces/demos/index.html
Java Distributed Computing Demos — This site offers a collection of
JavaSpaces demonstrations.

http://java.sun.com/products/javaspaces/specs/index.html
Java Distributed Computing Specifications — This site includes the JavaSpaces
Specifications.

http://sern.ucalgary.ca/Courses/CPSC/547/W2000/webnotes/JavaSpaces/JavaS
paces.htm

JavaSpaces presented by Jonathan Neitz — This paper discusses the Java
technology, JavaSpaces. This technology is based upon the services provided by
Sun's Jini platform, and Java's serialization and RMI services.

http://www.sun.com/consumer-embedded/cover/jstk-990615.html
JavaSpaces™ Technology Kit (JSTK) 1.0 Download — The JSTK provides
implementations of the JavaSpaces architecture specified in the Jini technology
extended core platform. The 1.0 release of the JSTK software consists of the
JavaSpaces software source and binary code, its APl documentation, release
notes for those classes and interfaces, and examples.

http://java.sun.com/products/javaspaces/fags/jsfag.html
Sun's JavaSpaces FAQ — This site provides answers to Frequently Asked
Questions about JavaSpaces.

http://java.sun.com/products/javaspaces/

Sun's JavaSpaces Technology — JavaSpaces technology is a simple unified
mechanism for dynamic communication, coordination, and sharing of objects
between Java technology-based network resources like clients and servers.

http://wwwwswest.sun.com/jini/specs/js-spec.html

The JavaSpaces Specification; Version 1.0, January 1999 — This specification
describes the architecture of JavaSpaces™ technology, which is designed to
help you solve two related problems: distributed persistence and the design of
distributed algorithms.

http://jiniworld.chonnam.ac.kr/document/javaspace/The%20Nuts%20and%20Bolt
$%200f%20Compiling%20and%20Running%20JavaSpaces(TM).htm

The Nuts and Bolts of Compiling and Running JavaSpaces Programs — This
article steps you through the details of setting up your machine environment,
compiling JavaSpaces programs, and correctly running them.

64

COTS: A Survey Data & Analysis Center for Software

6.4.2 Books — JavaSpaces

http://www.amazon.com/exec/obidos/ASIN/0201309556/qid=963583564/sr=1-
1/002-4377486-0324804

JavaSpaces Principles, Patterns and Practice — by Eric Freeman, Susanne
Hupfer, Ken Arnold; June 1999; Addison-Wesley Publishing Co.;

ISBN: 0201309556

http://www.amazon.com/exec/obidos/ASIN/1861002777/qid%3D960497042/sr%
3D1-4/002-4377486-0324804

Professional Java Server Programming: with Servlets, Java Server Pages (JSP),
XML, Enterprise JavaBeans (EJB), JNDI, CORBA, Jini and JavaSpaces — by
Andrew Patzer, et. al. August 1999; Wrox Press Inc; ISBN: 1861002777

http://www.amazon.com/exec/obidos/ASIN/1861003552/qid%3D961431788/sr%
3D1-12/002-4377486-0324804

Professional Jini & Java Spaces Programming — by Sing Li, Alvin Chin; June
2000; Wrox Press Inc; ISBN: 1861003552

http://www.artima.com/jini/booklist.html
Artima's List of Recommended Books about Jini and JavaSpaces — This site
provides a comprehensive list of books about Jini and JavaSpaces.

65

COTS: A Survey Data & Analysis Center for Software

6.5 Java Message Service (JMS)

JMS is an application program interface (API) for accessing enterprise
messaging systems from Java programs.'® Enterprise messaging provides a
reliable, flexible service for the asynchronous exchange of critical business data
and events throughout an enterprise. The JMS API adds to this a common API
and provider framework that enables the development of portable, message
based applications in the Java programming language. JMS supports the formal
communication known as messaging between computers in a network.

Sun's JMS provides a common interface to standard messaging protocols and
also to special messaging services in support of Java programs. Sun advocates
the use of the Java Message Service for anyone developing Java applications,
which can be run from any major operating system platform.™

6.5.1 Resources — Java Message Service (JMS)

http://www.vistabonita.com/papers/JIMS/IMS.html
Java Message Service — This paper discusses the JMS, JMS essentials, and
the JMS environment.

http://java.sun.com/products/jms/
Java Message Service APl 1.0.2 — This site provides documentation, FAQ, and
a vendor list.

http://www.execpc.com/~gopalan/jms/jms.html

Java Message Service by Gopalan Suresh Raj — This article explores JMS as a
standard Java-based interface to the message services of a Message-Oriented-
Middleware (MOM) of some other provider.

http://www.jguru.com/jguru/fag/fagpage.jsp?name=JMS
[Guru Java Message Service FAQ — This site offers a collection of Frequently
Asked Questions about the JMS.

12 Java Message Service Version 1.0.2, November 9, 1999, cover
13 Whatls.Com. http://www.whatis.com/jms.htm

66

COTS: A Survey Data & Analysis Center for Software

6.6 Enterprise JavaBeans (EJB)

Enterprise beans are server components written in the Java programming
language. Enterprise beans contain the business logic for an application. There
are two types of beans: session beans and entity beans.**

Enterprise JavaBeans servers reduce the complexity of developing middleware
by providing automatic support for middleware services such as transactions,
security, database connectivity, and more. EJB technology is based on the Java
programming language, components can be deployed on any platform and
operating system that supports the Enterprise JavaBeans standard, and any
operating system.®

6.6.1 Resources — Enterprise JavaBeans (EJB)

http://developer.java.sun.com/developer/onlineTraining/Beans/EJBTutorial/index.
html

Enterprise JavaBeans Tutorial — This tutorial focuses on Building your first
stateless Session Bean.

http://www.cetus-links.org/oo_javabeans.html

Cetus Links — Distributed Objects and Components: JavaBeans and Enterprise
JavaBeans — This site offers a wealth of information on JavaBeans and
Enterprise JavaBeans. Topics include examples, demos, central sites, related
sites, tutorials, FAQs, standards, literature, organizations,
conferences/workshops, and development environments.

http://patriot.net/~tvalesky/ejb.html
EJB Resources — This site includes a list of available products supporting EJB
and open-source and/or freeware EJB implementations.

http://www.javasoft.com/products/ejb/

Enterprise JavaBeans Home Page: Javasoft —This site offers news and articles,
customer success stories, an EJB Directory, white papers, FAQ, and
specifications.

http://java.sun.com/products/ejb/docs.html
Enterprise JavaBeans Specifications — EJB specifications and downloads are
available on this site.

4 The Java 2 Enterprise Edition Developer's Guide, Version 1.2.1, May 2000,

pg. 7
5 The Source for Java Technology — java.sun.com. Enterprise JavaBeans

Technology. http://www.javasoft.com/products/ejb/

67

COTS: A Survey Data & Analysis Center for Software

http://www.flashline.com/

Flashline.com: The Software Component Marketplace — This marketplace is
available to research, buy, and sell Java, COM, and CORBA software
components. JavaBeans, Enterprise JavaBeans (EJB), and custom components
are also available.

http://java.sun.com/products/ejb/fag.html
Sun's Enterprise JavaBeans FAQ — This site provides answers to Enterprise
JavaBeans Frequently Asked Questions.

http://java.sun.com/products/ejb/

Sun's Enterprise JavaBeans Home Page — This site provides products and
APIs, a developer connection, documentation and training, online support,
community discussion, industry news, and case studies.

6.6.2 Books — Enterprise JavaBeans (EJB)

http://www.amazon.com/exec/obidos/ASIN/0201604469/qid%3D962041588/sr%
3D1-6/002-4377486-0324804

Enterprise Javabeans: Developing Component-Based Distributed Applications —
by Thomas C. Valesky; May 1999;Addison Wesley Publishing Company; ISBN:
0201604469

http://www.amazon.com/exec/obidos/ASIN/1565928695/0/qid%3D962041104/sr
%3D8-1/ref%3Daps%5Fsr%5Fb%5F1%5F3/002-4377486-0324804

Enterprise Javabeans — by Richard Monson-Haefel; March 2000; O'Reilly &
Associates; ISBN: 1565928695

http://www.amazon.com/exec/obidos/ASIN/0471332291/0/qid%3D962041104/sr
%3D8-2/ref%3Daps%5Fsr%5Fb%5F1%5F4/002-4377486-0324804

Mastering Enterprise JavaBeans and the Java 2 Platform, Enterprise Edition —
by Ed Roman; September 1999; John Wiley & Sons; ISBN: 0471332291

http://www.amazon.com/exec/obidos/ASIN/1861002777/qid%3D960497042/sr%
3D1-4/002-4377486-0324804

Professional Java Server Programming: with Servlets, Java Server Pages (JSP),
XML, Enterprise JavaBeans (EJB), JNDI, CORBA, Jini and JavaSpaces — by
Andrew Patzer, et. al. August 1999; Wrox Press Inc; ISBN: 1861002777

68

COTS: A Survey Data & Analysis Center for Software

6.7 Extensible Markup Language (XML)

XML is the Extensible Markup Language, a system for defining specialized
markup languages that are used to transmit formatted data. XML is conceptually
related to HTML, but XML is not itself a markup language. Rather it is a
metalanguage, a language used to create other specialized languages.*®

XML describes a class of data objects which are stored on computers, and
partially describes the behavior of programs that process these objects. XML is a
subset or restricted form of SGML, the Standard Generalized Markup Language
(ISO 8879). The goal of XML is to enable generic SGML to be served, received,
and processed on the Web in the way that is now possible with HTML. XML has
been designed for ease of implementation and for interoperability with both
SGML and HTML."

6.7.1 Resources — Extensible Markup Language (XML)

http://xml.apache.org/

Apache XML Project — The goals of the Apache XML Project are: to provide
commercial-quality standards-based XML solutions that are developed in an
open and cooperative fashion; to provide feedback to standards bodies (such as
IETF and W3C) from an implementation perspective; and to be a focus for XML-
related activities within Apache projects.

http://www.w3.org/XML/

Extensible Markup Language (XML) — This site is provided by the W3C
Architecture Domain. It provides events, specifications, working groups, forums,
access to related sites, and software.

http://www.w3.0rg/TR/REC-xml

Extensible Markup Language 1.0 — This site contains the specification for XML
1.0. The Extensible Markup Language (XML) is a subset of SGML that is
completely described in this document. Its goal is to enable generic SGML to be
served, received, and processed on the Web in the way that is now possible with
HTML. XML has been designed for ease of implementation and for
interoperability with both SGML and HTML.

16 CNET Glossary.
http://coverage.cnet.com/Resources/Info/Glossary/Terms/xml.html/
" Graphics Communications Association.
http://www.gca.org/whats_xml/default.htm

69

COTS: A Survey Data & Analysis Center for Software

http://www.gca.org/whats_xml/default.htm

Graphic Communications Association: What is XML? — This site provides
access to W3C standards, a glossary, vocabularies, XML books, and
conferences.

http://www.ibm.com/developer/xml/
IBM Developer Works: XML Zone — This site provides XML news, tutorials,
reference materials, and software.

http://java.sun.com/xml/

Java Technology and XML — Implement XML technology using the Java
programming language and the Java API for XML Parsing (JAXP) technology,
and you've got something even more powerful: XML with cross-platform
capabilities built in at the binary level, so that even the tools you use to parse and
debug your XML code are platform-independent.

http://www.projectcool.com/developer/xmlz/

Project Cool XML Zone — Project Cool's XML Zone takes visitors from a basic
introduction to XML, through detailed how-to tutorials and advanced techniques.
A glossary is also available on the site.

http://www.cwi.nl/www.python.org/topics/xml/

Python and XML Processing — This site provides access to general XML
resources, Python software for XML, and the Python/XML Special Interest
Group.

http://www.xml.com/axml/testaxml.htm

The Annotated XML Specification by Tim Bray — This site presents an
annotated specification for the Extensible Markup Language (XML) 1.0, W3C
Recommendation, 10 February 1998.

http://www.oasis-open.org/cover/

The XML Cover Pages — This site provides a comprehensive online reference
work for the Extensible Markup Language (XML) and its parent, the Standard
Generalized Markup Language (SGML). The reference collection features
extensive documentation on the application of the open, interoperable markup
language standards, including XSL, XSLT, XPath, XLink, XPointer, HyTime,
DSSSL, CSS, SPDL, CGM, ISO-HTML, and others.

http://www.voicexml.org

VoiceXML Forum — The VoiceXML Forum is an industry organization founded
by AT&T, IBM, Lucent and Motorola, and chartered with establishing and
promoting the Voice eXtensible Markup Language (VoiceXML), a new standard
essential to making Internet content and information accessible via voice and
phone.

70

COTS: A Survey Data & Analysis Center for Software

http://www.w3.org/XML/Activity
W3C Extensible Markup Language (XML) Activity — Activity statements provide
an executive overview of W3C's work in this area.

http://www.WDVL.com/Authoring/Languages/XML/Resources.html

WDVL: XML Resources — WDVL's XML Resources section is an extensive
collection of XML resources, including links to all major XML sites, news, mailing
lists, books, references, FAQs and more.

http://msdn.microsoft.com/xml/index.asp
Web Workshop: XML Home — This page provides information on Microsoft's
support of the Extensible Markup Language (XML).

http://hotwired.lycos.com/webmonkey/xml/?tw=xml
Webmonkey, The Web Developer's Resource: XML — This site offers an
overview of XML and related resources.

http://developer.netscape.com/tech/xml/index.html

XML Developer Central — This site offers a broad collection of resources in
specifications, tools, newsgroups, tutorials, articles, sample code, demos, and
news.

http://www.cs.caltech.edu/~adam/LOCAL/xml.html

XML Links by Adam Rifkin and Rohit Khare — This site provides a wealth of
information on XML including recommended reading, books, links to XML for
beginners, recommendations, working drafts, specifications, and notes,
advanced XML and SGML topics, XML applications, and XML software.

http://www.heise.de/ix/raven/Web/xml/
XML Page — This site offers working notes, drafts, and notes; schemes, linking,
formatting, history, namespaces, querying, and a developer's list of resources.

http://www.xml-zone.com/

XML Zone — This zone of the Development Exchange (DevEXx) provides access
to XML news, FAQ, articles, sites, and newsgroups. Visitors can subscribe to
free news, tips, and article updates.

http://www.xml.org/xml-dev/index.shtml

XML-DEV @XML.ORG Discussion Group — This site contains the XML-DEV
archives. This group is for XML developers to share ideas and stay up-to-date
on issues in the XML development community.

http://www.xml.com/

XML.com — XML.com is a collaborative partnership between Seybold
Publications and Songline Studios, an affiliate of O'Reilly & Associates. The site
is designed to serve both people who are already working with XML and those

71

COTS: A Survey Data & Analysis Center for Software

HTML users who want to "graduate” to XML's power and complexity. A core
feature of the site is the Annotated XML Specification, created by Tim Bray, co-
editor of XML 1.0 and a contributing editor for XML.com.

http://www.xmlinfo.com/

XMLINFO — This site provides resources to new XML users, specifications and
drafts, books, conferences and seminars, courses and training, papers, and
examples.

http://www.ebxml.org/

ebXML — The mission of ebXML is to provide an open XML-based infrastructure
enabling the global use of electronic business information in an interoperable,
secure and consistent manner by all parties.

6.7.2 White Papers and Books — Extensible Markup Language (XML)

http://www.amazon.com/exec/obidos/ASIN/0130866016/qid%3D960499184/sr%
3D1-51/002-4377486-0324804

Building Web Sites with XML — by Michael Floyd; December 21, 1999; Prentice
Hall; ISBN: 0130866016

http://www.amazon.com/exec/obidos/ASIN/1861002270/qid%3D960497042/sr%
3D1-42/002-4377486-0324804

Designing Distributed Applications with XML: Asp le5 Ldap and Msmqg — by
Stephen T. Mohr; May 1999; Wrox Press Inc; ISBN: 1861002270

http://www.amazon.com/exec/obidos/ASIN/0596000162/qid%3D960497042/sr%
3D1-43/002-4377486-0324804

Java and XML — by Brett McLaughlin, Mike Loukides (Editor); O'Reilly Java
Tools; July 2000; O'Rellly & Associates; ISBN: 0596000162

http://www.amazon.com/exec/obidos/ASIN/1861002777/qid%3D960497042/sr%
3D1-4/002-4377486-0324804

Professional Java Server Programming: with Servlets, Java Server Pages (JSP),
XML, Enterprise JavaBeans (EJB), JNDI, CORBA, Jini and JavaSpaces — by
Andrew Patzer, et. al. August 1999; Wrox Press Inc; ISBN: 1861002777

http://www.amazon.com/exec/obidos/ASIN/1861003110/qid%3D960497042/sr%
3D1-7/002-4377486-0324804

Professional XML — by Mark Birbeck, et. al. January 2000; Wrox Press Inc;
ISBN: 1861003110

72

COTS: A Survey Data & Analysis Center for Software

http://www.amazon.com/exec/obidos/ASIN/1861002289/qid%3D960499184/sr%
3D1-72/002-4377486-0324804

XML Design and Implementation — by Paul Spencer; April 1999; Wrox Press
Inc; ISBN: 1861002289

http://www.amazon.com/exec/obidos/ASIN/1565927095/qid%3D960497042/sr%
3D1-9/002-4377486-0324804

XML Pocket Reference — by Robert Eckstein; October 1999; O'Reilly &
Associates; ISBN: 1565927095

http://www.amazon.com/exec/obidos/ASIN/0672315149/qid%3D960497042/sr%
3D1-14/002-4377486-0324804

XML Unleashed — by Michael Morrison, et. al. December 21, 1999; Sams;
ISBN: 0672315149

http://www.amazon.com/exec/obidos/ASIN/0789722429/qid%3D960497042/sr%
3D1-1/002-4377486-0324804

XML by Example — by Benoit Marchal December 14, 1999; Que;

ISBN: 0789722429

http://www.amazon.com/exec/obidos/ASIN/0201433354/qid%3D960497042/sr%
3D1-27/002-4377486-0324804

XML: A Manager's Guide — by Kevin Dick; Addison-Wesley Information
Technology Series; October 13, 1999; Addison-Wesley Publishing Co.;

ISBN: 0201433354

http://www.amazon.com/exec/obidos/ASIN/0764532367/qid%3D960497042/sr%
3D1-12/002-4377486-0324804

XML™ Bible — by Elliotte Rusty Harold; July 1999; IDG Books Worldwide;
ISBN: 0764532367

http://www.amazon.com/exec/obidos/ASIN/076453310X/qid%3D960497042/sr%
3D1-37/002-4377486-0324804

XML™: A Primer — by Simon St. Laurent; September 1999; IDG Books
Worldwide; ISBN: 076453310X

http://www.oasis-open.org/cover/bib-strt.html
Cover's List of Basic Books on SGML/XML and Related Standards — This list is
an annotated collection of titles on SGML, XML, and related standards.

http://www.w3.0rg/TR/REC-xml

Extensible Markup Language 1.0 — This site contains the specification for XML
1.0. The Extensible Markup Language (XML) is a subset of SGML that is
completely described in this document. Its goal is to enable generic SGML to be
served, received, and processed on the Web in the way that is now possible with

73

COTS: A Survey Data & Analysis Center for Software

HTML. XML has been designed for ease of implementation and for
interoperability with both SGML and HTML.

http://www.csclub.uwaterloo.ca/u/relander/ XML/
Generally Markup: XML Resources — This site provides white papers, tutorials,
online courses, and a list of related sites.

http://www.xmlbooks.com/

Goldfarb's Guide to All the XML Books in Print — This collection is sorted by
introduction to XML, its major applications, and tools; program development with
XML; DTDs and schemas; XML reference; knowledge management; learning the
foundations of XML; and standards.

http://www.oasis-open.org/cover/xmlintro.html
The XML Cover Pages: Introducing the Extensible Markup Language (XML) —
This page offers a collection of articles that introduce XML.

http://webreview.com/wr/pub/XML

Webreview.com — XML articles on using the eXtensible Markup Language as a
mechanism for defining standard Web-based formats for the interchange of
information.

http://www.vb-bookmark.com/vbXml.html
XML Bookmark: XML Programming Resource Directory — This rich resource
offers a collection of FAQ, tutorials, and articles on XML.

http://developer.netscape.com/tech/xml/index.html

XML Developer Central — This site offers a broad collection of resources in
specifications, tools, newsgroups, tutorials, articles, sample code, demos, and
news.

http://xml.superexpert.com/
XML Superexpert — This site contains tutorials, software, access to experts, and
articles.

http://www.xml.org/xmlorg_resources/whitepapers.shtml
XML.ORG White Papers — This collection includes papers targeted to general
audiences, managers, and developers.

http://www.xml.com/pub

XML.com — XML.com is a collaborative partnership between Seybold
Publications and Songline Studios, an affiliate of O'Reilly & Associates. The site
is designed to serve both people who are already working with XML and those
HTML users who want to "graduate” to XML's power and complexity. A core
feature of the site is the Annotated XML Specification.

74

COTS: A Survey Data & Analysis Center for Software

6.7.3 Educational Materials — Extensible Markup Language (XML)

http://metalab.unc.edu/xml/

Cafe con Leche XML News and Resources —This site provides access to XML
daily news updates, specifications, books, resources, development tools, non-
validating parsers, online validators and syntax checkers, formatting engines,
browsers, class libraries, editors, XML applications, and additional sites.

http://www.dacs.dtic.mil/training/xml-course.shtml

DACS Course: Introduction to XML — This web-based course presents the
fundamentals of XML. The objectives of the course are to understand what XML
is; to understand what XML is not; to understand the difference between XML
and HTML,; to learn how to develop well-formed and valid XML, to see some real
XML; and to understand the link between XML and Java.

http://www.finetuning.com/tutorials.html

Fine Tuning XML Tutorial — The goal of this tutorial is to start at the very, very,
beginning. That's right: all the way back to HTML! And then progress from there
gradually all the way through to well-formed XML, through to using XML with
CSS style sheets, and then XSLT style sheets, then XPath, XLink, and
XPointer, and eventually reaching DTDs and XML Schemas (along

with whatever else should appear that seems relevant along the way).

http://www.csclub.uwaterloo.ca/u/relander/ XML/
Generally Markup: XML Resources — This site provides white papers, tutorials,
online courses, and a list of related sites.

http://www.projectcool.com/developer/xmlz/

Project Cool XML Zone — This site takes visitors from a basic

introduction to XML, through detailed how-to tutorials and advanced techniques.
A glossary is also available on the site.

http://www.geocities.com/SiliconValley/Peaks/5957/xml.html

What is XML? — This collection of resources was compiled by L.C. Rees. It
includes resources for learning the eXtensible Markup Language and selected
links of continuing relevance.

http://www.vb-bookmark.com/vbXml.html
XML Bookmark: XML Programming Resource Directory — This rich resource
offers a collection of FAQ, tutorials, and articles on XML.

http://developer.netscape.com/tech/xml/index.html

XML Developer Central — This site offers a broad collection of resources in
specifications, tools, newsgroups, tutorials, articles, sample code, demos, and
news.

75

COTS: A Survey Data & Analysis Center for Software

http://www.katungroup.com/xml.htm
XML Links — This site presents a collection of XML links including articles,
developer resources, tutorials, publications, examples, and tools.

http://www.xmlpitstop.com/

XML Pitstop — The mission of this website is to provide the developer
community with a central location to learn about XML, locate resources and
network with fellow developers. The site is organized by the following sections:
examples, tools, tutorials, developers, resources, books, and user group.

http://www.w3schools.com/default.asp
XML School — This site contains a tutorial for XML. It provides an introduction,
describes how XML can be used, and provides syntax and related topics.

http://xml.superexpert.com/
XML Superexpert — This site contains tutorials, software, access to experts, and
articles.

http://developerlife.com/

developerlife.com — The tutorials found here show students how to use Javaz,
XML, Swing, Servlet, JDBC and RMI APIs to create real world applications using
XML and Java2. Complete source code files (with documentation) are available
for download in all the tutorials and articles.

http://msdn.microsoft.com/xml/tutorial/

msdn Online Web Workshop: XML Tutorial — This tutorial consists of a set of
interactive lessons, listed below, that walk a student through typical XML
authoring and development tasks.

6.7.4 Frequently Asked Questions (FAQ) — Extensible Markup Language
(XML)

http://www.inquiry.com/techtips/xml_pro/
Ask the XML Pro — This site offers an archive of responses to XML related
inquiries.

http://builder.cnet.com/Authoring/Xml20/
CNET Builder.com: 20 Questions on XML — This site presents answers to
several basic questions on XML.

http://www.perlxml.com/fag/perl-xml-fag.html
Perl XML FAQ — This FAQ contains information related to using and
manipulating XML with Perl.

76

COTS: A Survey Data & Analysis Center for Software

http://www.vb-bookmark.com/vbXml.html
XML Bookmark: XML Programming Resource Directory —This rich resource
offers a collection of FAQ, tutorials, and articles on XML.

http://www.finetuning.com/faq.html
finetuning.com's FAQ — This site offers a wide variety of XML FAQ.

http://developer.irt.org/script/xml.htm
irt.org: Extensible Markup Language (XML) FAQ Knowledge Base — This site
provides a collection of XML FAQ.

6.7.5 Tools— Extensible Markup Language (XML)

http://metalab.unc.edu/xml/

Cafe con Leche XML News and Resources — This site provides access to XML
daily news updates, specifications, books, resources, development tools, non-
validating parsers, online validators and syntax checkers, formatting engines,
browsers, class libraries, editors, XML applications, and additional sites.

http://www.garshol.priv.no/download/xmltools/
Free XML Tools and Software — The resources on this site are grouped by
category, name, platform, vendor, and standard.

http://www.goxml.com/

GoXML.com — GoXML.com is an XML context-based search processor. The
GoXML Project was launched to create a new breed of search vehicle that can
index, store and allow accurate searching of XML data.

http://java.sun.com/xml/download.html

Java Technology and XML — The Java API for XML Parsing (JAXP) Optional
Package provides basic functionality for reading, manipulating, and generating
XML documents through pure Java APIs. It is a thin and lightweight API that
provides a standard way to seamlessly integrate any XML-compliant parser with
a Java application. The software can be downloaded from this site.

http://www.infotek.no/sgmitool/guide.htm

The Whirlwind Guide to SGML & XML Tools and Vendors — This guide by Steve
Pepper provides tool information by tool/resource category, by product name, by
vendor name, and by service providers.

http://www.oasis-open.org/cover/check-xml.html
The XML Cover Pages: Check or Validate XML — This page provides access to
a collection of tools for checking or validating XML.

77

COTS: A Survey Data & Analysis Center for Software

http://developer.netscape.com/tech/xml/index.html

XML Developer Central — This site offers a broad collection of resources in
specifications, tools, newsgroups, tutorials, articles, sample code, demos, and
news.

http://www.katungroup.com/xml.htm
XML Links — This site presents a collection of XML links including articles,
developer resources, tutorials, publications, examples, and tools.

http://www.xmlpitstop.com/

XML Pitstop — The mission of this website is to provide the developer
community with a central location to learn about XML, locate resources and
network with fellow developers. The site is organized by the following sections:
examples, tools, tutorials, developers, resources, books, and user group.

http://xml.superexpert.com/
XML Superexpert — This site contains tutorials, software, access to experts, and
articles.

http://www.xmlsoftware.com/
XML Software: The XML Software Site — This site contains a collection of XML
software. The site contains browsers, editors, parsers, utilities, and related tools.

78

COTS: A Survey Data & Analysis Center for Software

6.8 DIl COE (Defense Information Infrastructure Common Operating
Environment)

The DIl COE concept is best described as a flexible architecture and approach
for building interoperable systems. The COE is a multifaceted concept. It is not a
system, but is a foundation upon which open systems can be built. A foundation
that provides functionality to target systems for services such as data
manipulation, network communications, database storage and others. The COE
includes rules, methodologies and tools which form a framework for system
development and integration.®

The DII COE is an open architecture designed around a client/server
model. The COE is not a system; it is a foundation for building an open system.
The DIl COE is best described as:

-- an architecture that is fully compliant with the DoD's Technical Architecture for
Information Management (TAFIM), Volumes 2 and 3,

-- an approach for building interoperable systems,

-- a collection of reusable software components,

-- a software infrastructure for supporting mission area applications,

-- a set of guidelines and standards.*

The DIl COE concept encompasses the following:

-- an architecture and approach for building interoperable systems;

-- an infrastructure for supporting mission area applications;

-- a rigorous definition of the runtime execution environment;

-- a rigorous set of requirements for achieving COE compliance;

-- an automated toolset for enforcing COE principles and measuring COE
compliance;

-- an automated process for software integration;

-- a collection of implemented, reusable software components;

-- an approach and methodology for software reuse;

-- a collection of application program interfaces (APIs) for accessing COE
components.?°

18 Defense Information Infrastructure Common Operating Environment.
http://www.dmcdayton.day.disa.mil/Services/Midtier/DIICOE.htm

9 DE Guidebook — Appendix D: DE Process Foundations —

Part Ill — Coordinating with DoD and USAF Standards and Mandates.
http://www.asset.com/stars/loral/domain/guide/degaxd51.htm

20 AdalC News Fall 1997. http://adaic.org/news/Newsletter/1997/fall/7.htm

79

COTS: A Survey Data & Analysis Center for Software

6.8.1 Resources — DIl COE

http://dii-sw.ncr.disa.mil/coe/

Defense Information Infrastructure Common Operating Environment (DIl COE)

Home Page — Serving as a DISA/JIEOQO/IPESO Information Clearinghouse, the
IPESO provides DISA, DoD Program Managers, and other users with access to
DIl COE products and services and responds to customer questions, problems,
and issues via on-line help desk support.

http://coeeng.ncr.disa.mil/REFERENCE_PAGES/JCSCOT/JCSCOT.HTM
COTS Inclusion in the DIl COE — This paper discusses considerations
surrounding the inclusion of Commercial-off-the-shelf (COTS) products in the
Defense Information Infrastructure (DII) Common Operating Environment (COE).

http://dod-ead.mont.disa.mil/cm/cm_page.html
DIl COE Configuration Management — This page provides access to a collection
of databases and documentation.

http://diicoe.disa.mil/coe

DIl COE: Defense Information Infrastructure Common Operating Environment —
The DII COE originated with a simple observation about command and control
systems: certain functions (mapping, track management, communication
interfaces, etc.) are so fundamental that they are required for virtually every
command and control system. The DIl COE is presently used in two systems: the
Global Command and Control System (GCCS), and the Global Combat Support
System (GCSS). Both systems use the same infrastructure and integration
approach, and the same COE components for functions that are common.

http://dii-sw.ncr.disa.mil/cseic/listserv/imaillist.ntml

DIl COE Listserv — The DISA Information Processing Engineering Support
Organization (IPESO) has developed a DIl COE listserv. The DIl COE listserv
provides a moderated forum for COE developers and users to disseminate
information, share ideas and lessons learned, collaborate, and post questions
and answers.

http://ssedl1.ncr.disa.mil/

DISA DIl Enterprise Licensing Program — The mission of the Defense
Information Systems Agency (DISA) Defense Information Infrastructure (DII)
Enterprise Licensing Program is to provide very low cost, easily purchased and
managed Commercial-off-the-shelf (COTS) components for the DIl community.

http://dii-sw.ncr.disa.mil/coe/topics/atd/
DISA's Advanced Technologies — Links to briefings on topics in OOT, CORBA,
and Java, including applications to Ada and reengineering.

80

COTS: A Survey Data & Analysis Center for Software

http://www.dmcdayton.day.disa.mil/Services/Midtier/DIICOE.htm

Defense Information Infrastructure (DIl) Common Operating Environment (COE)
— The DIl COE concept is best described as a flexible architecture and
approach for building interoperable systems.

http://www.hanscom.af.mil/dii-coe/fag.htm

Defense Information Infrastructure -- Implementing DIl Compliant Systems --
Frequently Asked Questions — This is a collection of answers to FAQ regarding
the DIl COE.

http://www.disa.mil/disahomejs.html

Defense Information Systems Agency (DISA) — This is DISA's main home page.
DISA is the Department of Defense (DOD) agency responsible for information
technology and is the central manager of major portions of the Defense
Information Infrastructure (DII). At this site, you will find information on COE,
GCCS and GCSS.

http://www-jta.itsi.disa.mil/jta/jtamemo2.pdf

DoD Joint Technical Architecture (JTA), Version 2.0, 30 November 1998 --
Implementation Memo — The JTA implementation memorandum is

signed by the Tri-Chairs of the Architecture Coordination Council (ACC). It makes
JTA Version 2.0 effective for immediate use, superseding VTA Version 1.0.

http://dod-ead.mont.disa.mil/aug_home/index.html

GCCS -- Global Command and Control System — The Global Command and
Control System (GCCS) is an automated information system designed to support
deliberate and crisis planning with the use of an integrated set of analytic tools
and the flexible data transfer capabilities. GCCS will become the single C4l
system to support the warfighter from foxhole to command post.

http://www.disa.mil/gcss/gcsshome.html

GCSS -- Global Combat Support System — The C4l for the Warrior (C4IFTW)
concept is committed to the challenge of meeting the warrior's quest for
information needed to achieve victory for any mission, at any time and at any
place. C4IFTW is the vision and roadmap for creating a broadly connected joint
system that provides total battle space information to the warrior. GCSS is the
final piece of the C4IFTW concept. It is a demand-driven, joint warfighter-focused
initiative to accelerate delivery of improved combat support capabilities. Using
the same approach, methodology, practices, tools, and integration procedures as
the Global Command and Control System (GCCS), GCSS is a strategy that
integrates existing combat support systems to gain efficiency and interoperability
in support of the warfighter. GCSS will provide the warfighter with a fused, real-
time combat support view of the battle space.

81

COTS: A Survey Data & Analysis Center for Software

http://www.stsc.hill.af.mil/CrossTalk/1999/sep/engert.asp

Introduction to the Defense Information Infrastructure (DIl) Common Operating
Environment (COE) — The DIl COE provides a foundation for building
interoperable command and control systems using reusable software
components. This article appeared in CrossTalk, a publication of the Software
Technology Support Center (STSC).

http://www.sei.cmu.edu/str/descriptions/diicoe_body.html

Software Technology Review -- Defense Information Infrastructure Common
Operating Environment (DIl COE) — The purpose of DIl COE is to field systems
with increasing interoperability, reusability, portability, and operational capability,
while reducing development time, technical obsolescence, training requirements,
and life-cycle cost.

http://www.oasis-open.org/cover/dii-coeXMLRegistry.html

The XML Cover Pages -- DIl Common Operating Environment (COE) XML
Registry — This Registry enables the consistent use of XML, both vertically
within projects and horizontally across organizations. The DIl COE XML Registry
constitutes guidance in the generation and use of XML within the COE v4.x data
environment and is the authoritative source for approved XML data and metadata
components.

82

COTS: A Survey Data & Analysis Center for Software

6.9 Unified Modeling Language (UML)

UML is a language for specifying, constructing, visualizing, and documenting the
artifacts of a software-intensive system. UML is a standard notation for the
modeling of real-world objects as a first step in developing an object-oriented
program. Its notation is derived from and unifies the notations of three object-
oriented design and analysis methodologies: Grady Booch's methodology for
describing a set of objects and their relationships; James Rumbaugh's Object-
Modeling Technique (OMT); and Ivar Jacobson's approach which includes a use
case methodology.?

6.9.1 Resources — Unified Modeling Language (UML)

http://home.earthlink.net/~salhir/applyingtheuml.html

Applying the Unified Modeling Language (UML) — The UML is a modeling
language for specifying, visualizing, constructing, and documenting the artifacts
of a system-intensive process. This paper elaborates on the application of the
UML.

http://linwww.ira.uka.de/bibliography/SE/uml.html
Bibliography on the Unified Modeling Language — This bibliography contains
references to over 300 publications about the UML.

http://www.sente.ch/cetus/oo_uml.html

Cetus Links -- Architecture and Design: Unified Modeling Language (UML) —
This site provides access to Unified Modeling Language (UML) tutorials, FAQs,
references, standards, mailing lists, articles, books, projects,
conferences/workshops, utilities/tools, software, and other resources.

http://home.pacbell.net/ckobryn/uml.htm#OMG UML Specification
Cris Kobryn's UML Resource Page — This site provides links to the OMG UML
specification, UML events, UML vendors, UML books, and other UML links.

http://www.omg.org/uml/
Object Management Group (OMG) UML Resource Page — This site offers
documentation, articles, information, and useful links.

http://www.objectsbydesign.com/tools/umitools_byCompany.html
Objects by Design: UML Modeling Tools — This site presents a collection of
UML tools and includes information on the vendor, product, platform, and price.

1 Whatls?Com. http://www.whatis.com/

83

COTS: A Survey Data & Analysis Center for Software

http://www.objectsbydesign.com/tools/umitools_byCompany.html
The UML Zone — This site presents FAQ, UML atrticles, links to related sites,
UML newsgroups, and UML book reviews.

http://www.platinum.com/corp/umi/uml.htm
UML Center — This site provides UML information, UML events, articles and
publications, industry links, and UML partners.

http://www.softdocwiz.com/UML.htm
UML Dictionary — This Unified Modeling Language (UML) Dictionary, put
together by Kendall Scott, contains over 600 terms.

http://www.jeckle.de/uml_pub.htm
UML Publications — This site contains links to a large collection of online UML
publications and articles.

http://www.holub.com/class/oo_design/uml.html

UML Reference Card — This site is a printable reference page of UML diagrams.
It is segmented into Static-Model Diagrams, Dynamic-Model Diagrams, and
Activity Diagrams, each of which is accompanied by definitions of the diagrams'
terms.

http://www.rational.com/uml/index.jtmpl

UML Resource Center — The Unified Modeling Language™ (UML) is the
industry-standard language for specifying, visualizing, constructing, and
documenting the artifacts of software systems. It simplifies the complex process
of software design, making a "blueprint” for construction. This site contains UML
documentation.

http://home.earthlink.net/~salhir/whatistheuml.html

What is the Unified Modeling Language (UML)? — The UML is a modeling
language for specifying, visualizing, constructing, and documenting the artifacts
of a system-intensive process. This paper elaborates on the definition of the
UML.

6.9.2 Books — Unified Modeling Language (UML)

http://www.amazon.com/exec/obidos/ASIN/020130998X/qid=964461209/sr=1-
1/102-5607525-4562541

The Unified Modeling Language Reference Manual — by James Rumbaugh, Ivar
Jacobson, Grady Booch December 1998; Addison-Wesley Publishing Co.;

ISBN: 020130998X

84

COTS: A Survey Data & Analysis Center for Software

http://www.amazon.com/exec/obidos/ASIN/0201571684/qid=964461209/sr=1-
2/102-5607525-4562541

The Unified Modeling Language User Guide — by Grady Booch, Ivar Jacobson,
James Rumbaugh October 30, 1998; Addison-Wesley Publishing Co.;

ISBN: 0201571684

http://www.oreilly.com/catalog/umlinut/
UML in a Nutshell — by Sinan Si Alhir September 1998; O'Reilly and Associates;
ISBN: 1-56592-448-7

6.9.3 Frequently Asked Questions (FAQ) — Unified Modeling Language
(UML)

http://www.rational.com/uml/gstart/fag.jtmpl
UML FAQ for Beginners — This site presents answers to FAQ often posed by
UML beginners.

http://www.microgold.com/Stage/UML_FAQ.html
UML Frequently Asked Questions — This collection of FAQ addresses general
information, overview, metamodel, notation, and process questions about UML.

http://www.uml-zone.com/umlfag.asp
UML Zone Frequently Asked Questions — This site presents a collection of
common guestions.

85

COTS: A Survey Data & Analysis Center for Software

6.10 COnstructive COTS (COCOTYS)

COCOTS is a cost estimation model designed to capture explicitly the most
important costs associated with COTS component integration. COCOTS is
actually an amalgam of four related sub-models, each addressing individually
what the authors have identified as the four primary sources of COTS software
integration costs. These are costs due to the effort needed to perform (1)
candidate COTS component assessment, (2) COTS component tailoring, (3) the
development and testing of any integration or "glue" code needed to plug a
COTS component into a larger system, and (4) increased system level
programming due to volatility in incorporated COTS components.?

6.10.1 Resources — COCOTS

http://fast.faa.gov/pricing/c1919-19E.htm#19E.3

Toolsets / FAA Pricing Handbook — This site reviews the COTS cost estimation
model status. The current model provides insight into the most important factors
that should be considered when estimating the cost of integrating COTS
components, regardless of the specific tool or methodology used to perform that
estimation.

http://sunset.usc.edu/research/COCOTS/cocots_main.html

University of Southern California Center for Software Engineering:

COnstructive COTS — This site provides a model rationale, model description, a
description of four submodels, and overall cost estimation guidelines.

22 University of Southern California — Center for Software Engineering. Model
Rationale. http://sunset.usc.edu/research/COCOTS/cocots_main.html#rationale

86

COTS: A Survey Data & Analysis Center for Software

7 Essential Reading on COTS

This section focuses on key contributions on COTS-based development. This list
is not definitive or comprehensive by any means.

The following papers give a broad introduction to the topic.

Wallnau, K.C., Carney, D., Pollak, B., "How COTS Software Affects the Design
of COTS-Intensive Systems". Available WWW
http://interactive.sei.cmu.edu/Features/1998/June/COTS_Evaluation/COTS_Eval
uation.htm (1998).

Carney, D.J., Oberndorf, P.A., "The Commandments of COTS: Still in Search of
the Promised Land", CrossTalk, May 1997, Vol.10, No.5, pp. 25-30.

COTS and Open Systems — An Overview
http://www.sei.cmu.edu/str/descriptions/cots_body.html

Component-Based Software Development/COTS Integration
http://www.sei.cmu.edu/str/descriptions/cbsd_body.html

This paper describes key issues encountered by projects using COTS.

Vidger, M.R., Gentleman W.M., Dean, J., "COTS Software Integration: State of
the Art”, National Research Council of Canada, 1998. Available at
http://wwwsel.iit.nrc.ca/abstracts/NRC39198.abs

This paper is essential for design issues when COTS are involved.

Garlan, D., Allen, R., Ockerbloom, J., "Architectural Mismatch or Why It's Hard to
Build Systems out of Existing Parts", Proceedings of the 1995 International
Conference on Software Engineering, Seattle, WA, USA, 1995, pp. 179-185.

This book describes Catalysis, probably the most mature process and notation
for component based development. Although not specific to COTS, it highlights
some essential design issues and notation.

Desmond D'Souza, Alan Wills: Objects, Components and Frameworks With
UML: The Catalysis Approach, Addison-Wesley, 1998.

87

COTS: A Survey Data & Analysis Center for Software

88

COTS: A Survey Data & Analysis Center for Software

8 Concluding Remarks

COTS-based development is probably here to stay. There is evidence of both
successful use of COTS, and failures in projects using them. Overall, there is no
way to state that COTS are only a success or a failure factor. Success depends
on several factors. We try to summarize them and analyze their influence on the
success of a project.

Criticality of the Project. If a project is highly critical (meaning that a failure in
the software system can lead to loss of life, or environmental hazard, or jeopardy
on business critical functions), the use of COTS should be seriously evaluated. A
user has limited control on both the quality of the COTS product and the quality
of the process used to produce it. Techniques to certify the quality of COTS are
still immature. As of today, a COTS can be trusted only if it is used by a large
user base, during a long period. In hardware engineering, life critical or mission
critical systems use off-the-shelf hardware that has been used by a large
community for several years. A similar approach should be used for COTS
software too. On the other hand a piece of software that satisfies this condition is
usually more reliable than an equivalent module built in-house.

Dependability of the COTS and the Vendor. There are little or no techniques
that allow a user to assess the dependability of a COTS (in the sense of
availability of the functionality promised by the documentation, reliability of the
functionality, availability and quality of documentation). Using the product is the
best option. An indirect indicator is the existence of the product since a long time,
and a satisfied community of users. As for the dependability of the vendor, the
same applies: trying it, and checking the community of users. Clearly, COTS just
released on the market by start ups and with few users are the most risky.

COTS Domain. We observe that dependable COTS, with a large customer base,
are pretty common in the domain of software services common to any
application: operating systems, networking, databases, user interfaces, GUIs,
office automation, mathematical libraries, and so on. In these cases the need for
a product appeared early, and spurred companies that satisfy them. Further,
competing vendors usually exist for these products.

In these cases, using the COTS is the default choice. Not using a COTS (say a
database, or a GUI) is a choice that has to be justified. Usually this can happen
when very specific needs demand for particular solutions.

Dependable, diffused COTS exist also for some domains specific to only a class
of applications. Accounting, warehouse management, payroll management, and
more recently ERP (Enterprise Resource Planning) are some of these domains.

Project Architecture. Using a single COTS avoids integration problems with
other COTS. If several COTS have to be integrated, it is more likely that conflicts

89

COTS: A Survey Data & Analysis Center for Software

among them (due to different assumptions in control, GUIs, interfaces in general)
arise.

By aggregating the factors above we can argue that using a dependable COTS
in a non critical project based on a single COTS is probably a reasonable choice.
On the other hand integrating several COTS, just released, in a highly critical
project means probably asking for trouble. In between lies a twilight zone where
the decision on using COTS has to be carefully evaluated case by case.

90

COTS: A Survey Data & Analysis Center for Software

9 References

[Abst 2000] Abst, Chris, Boehm B., Clark E.B., Empirical Observations on COTS
Software Integration Effort Based on the Initial COCOTS Calibration
Database, ICSE 2000 COTS Workshop, Limerick, Ireland, June 2000
available at
http://wwwsel.iit.nrc.ca/projects/cots/icse2000wkshp/index.html

[Beizer 1995] Beizer, Boris, Black-Box Testing Techniques for Functional Testing
of Software and Systems, New York: Wiley 1995

[Brownsword et al. 1998] Brownsword, L., Carney, D., Oberndorf, T., The
Opportunities and Complexities of Applying Commercial-Off-the-Shelf
Components, 1998, available at
http://interactive.sei.cmu.edu/Features/1998/June/Applying_ COTS/Applyin
g_COTS.htm

[Carney 1997] Carney, D. Assembling Large Systems from COTS Components:
Opportunities, Cautions, and Complexities. SEI Monographs on Use of
Commercial Software in Government Systems, Software Engineering
Institute, Pittsburgh, USA, June 1997.

[Carney, Long 2000] Carney, D., Long, F., What Do You Mean by COTS?, IEEE
Software, March/April 2000, pp. 83-86.

[D’Souza 1998] Desmond D'Souza, Alan Wills: Objects, Components and
Frameworks with UML: The Catalysis Approach, Addison-Wesley, 1998.

[Davis, Williams 1997] Davis, M.J., Williams, R.B., Software Architecture
Characterization, Proceedings of the 1997 Symposium on Software
Reusability (SSR'97), Boston, USA, May, 1997, pp. 30-38.

[DeMillo 1987] DeMillo, Richard, McCracken, W. Michael, Martin, R. J.,
Passafiume, John F., Software Testing and Evaluation, Menlo Park, CA:
Benjamin/Cummings Publishing Co. Inc., 1987

[Fowler 1997] Martin Fowler, Kendall Scott: UML Distilled: Applying the Standard
Object Modeling Language, Addison-Wesley, 1997.

[Fox 1998] Fox, G., Marcom, S., Lantner, K., A Software Development Process
for COTS-based Information System Infrastructure. Part Il: Lessons
Learned, CrossTalk, April 1998, available at
http://www.stsc.hill.af.mil/CrossTalk/1998/apr/process.asp

91

COTS: A Survey Data & Analysis Center for Software

[Gallagher 1991] Gallagher, K B, Lyle, J R, Using Program Slicing in Software
Maintenance, IEEE Transactions on Software Engineering, 17:751-761,
Aug 1991

[Garlan et al. 1995] Garlan, D., Allen, R., Ockerbloom, J., Architectural Mismatch
or Why it's Hard to Build Systems out of Existing Parts, Proceedings of the
17" International Conference on Software Engineering, Seattle, 1995.

[Ghosh 1998] Ghosh, A. K., Schmid, M., Shah, V., Testing the Robustness of
Windows NT Software. 1998 International Symposium on Software
Reliability Engineering (ISSRE98), available at http://www.rstcorp.com

[Ghosh 1999] Ghosh A. K., Schmid M. An Approach to Testing COTS Software
for Robustness to Operating System Exceptions and Errors, 1999
International Symposium on Software Reliability Engineering (ISSRE99)
Nov 1-2 1999, Boca Raton FI, available at http://www.rstcorp.com

[Haynes et al. 1997] Haynes, G., Carney, D., Foreman, J., Component-Based
Software Development / COTS Integration, 1997, available at
http://www.sei.cmu.edu/str/descriptions/cbsd.html

[Hetzel 1984] Hetzel, William, The Complete Guide to Software Testing.
Wellesley, MA: QED Information Sciences, Inc. 1984

[Hissam 1998] Hissam, Scott, Experience Report: Correcting System Failure in a
COTS Information System, 1998 In Proceedings of 15" International
Conference on Software Maintenance, November 1998.

[Kitchenham 1997] Kitchenham, B.A. and Linkman, S.G. and Law, D. DESMET:
A Methodology for Evaluating Software Engineering Methods and Tools.
IEE Computing & Control Journal, June 1997, ppl120-126.

[Knight 1986] Knight, J.C. and N.G. Leveson, An Experimental Evaluation of the
Assumption of Independence in Multi-Version Programming, IEEE
Transactions on Software Engineering, SE-12(1):96-109, January 1986.

[Kohl] Kohl, Ronald J., V&V of COTS Dormant Code: Challenges and Issues,
http://wwwsel.iit.nrc.ca/projects/cots/icsewkshp/papers.html

[Kontio 1996] J. Kontio. A Case Study in Applying a Systematic Method for

COTS Selection, Proceedings of the 18th International Conference on
Software Engineering, Berlin, March 1996.

92

COTS: A Survey Data & Analysis Center for Software

[Kropp 1998] Kropp, N. P., Automatic Robustness Testing of Off-the-Shelf
Software Components. Institute for Complex Engineering Systems,
Carnegie Institute of Technology, Carnegie Mellon University, CMU/ICES-
TR-01-27-98

[McGraw] McGraw, G, Viega, J, Why COTS Software Increases Security Risks,
available at http://www.rstcorp.com

[Morisio 1997] Morisio M., Tsoukias A., IUSWARE: A Formal Methodology for
Software Evaluation and Selection, IEE Proceedings on Software
Engineering, vol. 144, 162 - 174, 1997.

[Morisio 2000] Morisio M., Seaman C., Parra A., Basili V., Kraft S., Condon S.,
Investigating and Improving a COTS-Based Software Development
Process, 22nd International Conference on Software Engineering,
Limerick, Ireland, June 2000.

[Oberndorf 1997] Oberndorf, T., COTS and Open Systems - An Overview, 1997,
available at http://www.sei.cmu.edu/str/descriptions/cots.html#ndi

[Parra 1997] Parra, A., C. Seaman, V. Basili, S. Kraft, S. Condon, S. Burke, and
D. Yakimovich, The Package-Based Development Process in the Flight
Dynamics Division. in Proceedings of the 22" Software Engineering
Workshop, NASA/Goddard Space Flight Center, December 1997, pp. 21-
56.

[Reifer 1999] Reifer D., Ragan T., Kalb G.E., COTS Software Management:
Taming the Beast, May 1999, available at http://www.reifer.com

[Rumbaugh 1998] James Rumbaugh, Ivar Jacobson, Grady Booch: The Unified
Modeling Language Reference Manual, Addison-Wesley, 1998.

[Saaty 1980] T. Saaty, The Analytic Hierarchy Process, McGraw Hill, New York,
1980.

[Schneidewind 1998] Schneidewind, N. Methods for Assessing COTS Reliability,
Maintainability, and Availability, 1998 In Proceedings of 15" International
Conference on Software Maintenance, November 1998.

[SEL 1998] NASA/SEL, SEL COTS Study, Phase 1, Initial Characterization
Study, SEL-98-001, August 1998.

[Sha 1998] Lui Sha, John B. Goodenough, Bill Pollak, Simplex Architecture:

Meeting the Challenges of Using COTS in High-Reliability Systems,
CrossTalk, April 1998.

93

COTS: A Survey Data & Analysis Center for Software

[Shaw 1995] Shaw, M., Architectural Issues in Software Reuse: It's Not Just the
Functionality, It's Packaging, Proceedings of the Symposium on Software
Reusability, 1995, Seattle, WA, USA, pp. 3-6.

[Sparks et al. 1996] Sparks, S., Benner, K., Faris, C., Managing Object-Oriented
Framework Reuse, IEEE Computer, September 1996, pp. 52-61.

[Stamelos 2000] Stamelos 1., Vlahavas |., Refanidis I., Tsoukias A., Knowledge
Based Evaluation of Software Systems: a Case Study, Information and
Software Technology, 42(5) 2000, pp. 333-345.

[Swanson 1997] Swanson, B.D., MacMagnus, J.G., C++ Component Integration
Obstacles, CrossTalk, May 1997, Vol.10, No.5, pp. 22-24.

[USC 2000] USC-CSE-2000-501 COCOTS: A COTS Software Integration
Lifecycle Cost Model - Model Overview and Preliminary Data Collection
Findings, Computer Science Department, USC Center for Software
Engineering, available at http://sunset.usc.edu, 2000.

[USC 1997] USC-CSE97 - Center for Software Engineering , COCOMO Il Model
Definition Manual, Computer Science Department, USC Center for
Software Engineering, http://sunset.usc.edu/Cocomo.html, 1997.

[Vidger, Dean 1997] Vidger, M.R., Dean, J., An Architectural Approach to
Building Systems from COTS Software Components, The 22" Software
Engineering Workshop, NASA/Goddard Space Flight Center Software
Engineering Laboratory (SEL), Greenbelt, MD, December 1997, pp. 99-
131

[Vincke 1992] P. Vincke, Multicriteria Decision Aid, John Wiley, New York, 1992.

[Voas 1998] Voas, J. Defensive Approaches to Testing Systems that Contain
COTS and Third-Party Functionality www.rstcorp.com 1998 In
Proceedings of 15" International Conference and Expo on Testing
Computer Software, June 1998.

[Voas 1999] Voas, J, Certifying Software for High-Assurance Environments,
IEEE Software, July/August 1999, p 48-54.

[Voas Charron] Voas, J, Charron F, Miller, K, Tolerant Software Interfaces: Can
COTS-Based Systems be Trusted without Them? Available at
http://www.rstcorp.com

[Voas Payne] Voas, J, Payne, J, Dependability Certification of Software
Components, available at http://www.rstcorp.com

94

COTS: A Survey Data & Analysis Center for Software

[Voas] Voas, J, Software Component Dependability Assessment, available at
http://www.rstcorp.com

[Weiser 1984] Weiser, Mark, Program Slicing. IEEE Transactions on Software
Engineering, 10:352-357, July 1984.

[Yakimovich 1999] Yakimovich, D., Bieman, J.M., Basili, V.R., Software
Architecture Classification for Estimating the Cost of COTS Integration,
Proceedings of the 21% International Conference on Software Engineering,
Los Angeles, USA, 1999, pp. 296 -302.

[Yeh 1996] Yeh, Y.C., Triple-Triple Redundant 777 Primary Flight Computer,

Proceedings of the 1996 IEEE Aerospace Applications Conference, Vol. 1,
New York, NY, Feb. 3-10, 1996, pp. 293-307.

95

